Coccoloba marginata Benth fruits: a rich source of bioactive compounds

Autores

  • João Vitor Souza Soares Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0003-4866-7210
  • Daniel Queiroz Rocha Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0009-0009-2474-8076
  • Edinilze Souza Coelho Oliveira Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-5910-4918
  • Andreia Montoia Salvador Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-8713-1120
  • Débora Nogueira Cavalcante Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0009-0001-1914-0834
  • Erickson Oliveira dos Santos Research Laboratory for Water Reuse, Samsung Research & Development Institute Brazil, Samsung Eletrônica da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-4569-905X
  • Pedro Luis Sosa Gonzales Research Laboratory for Water Reuse, Samsung Research & Development Institute Brazil, Samsung Eletrônica da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-8542-6320
  • Laura da Silva Cruz Universidade Federal de Alfenas, In vitro and in vivo Nutritional and Toxicological Analysis Laboratory, Alfenas, Minas Gerais, Brazil. https://orcid.org/0009-0006-4626-8741
  • Luciana Azevedo Universidade Federal de Alfenas, In vitro and in vivo Nutritional and Toxicological Analysis Laboratory, Alfenas, Minas Gerais, Brazil. https://orcid.org/0000-0002-0502-4090
  • Edgar Aparecido Sanches Universidade Federal do Amazonas, Materials Physics Department, Laboratory of Nanostructured Polymers, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-1446-723X
  • Pedro Henrique Campelo Universidade Federal de Viçosa, Department of Food Technology, Viçosa, Minas Gerais, Brazil. https://orcid.org/0000-0002-5137-0162
  • Valdely Ferreira Kinupp Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-3892-7288
  • Renilto Frota Corrêa Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0001-6236-2283
  • Jaqueline de Araujo Bezerra Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Centro de Estudos de Ciência e Tecnologia da Amazônia, Manaus, Amazonas, Brazil. https://orcid.org/0000-0002-9168-9864

DOI:

https://doi.org/10.5327/fst.525

Palavras-chave:

Polygonaceae, Cipó-pau, Phenolic acids, Flavonoids, Cytotoxic activity

Resumo

The aim of the present study was to investigate the chemical profiles of the fruit extracts of Coccoloba marginata Benth and the cytotoxic activity of the ethanolic extract against two cell lines, HCT8 (human colon carcinoma) and A549 (lung adenocarcinoma). The ethanolic extract was found to contain gallic and protocatechuic acids, flavonoids derived from quercetin and myricetin, and anthocyanins. This extract inhibited the growth of cancer cells (GI50: 123.2 g GAE/mL for A549 and GI50: 44.15 g GAE/mL for HCT8, where GAE stands for Gallic Acid Equivalent) without cytotoxic effects on normal cells (GI50: 145.9 g GAE/mL for human umbilical vein endothelial cell). However, the selectivity index (< 1) indicated low specificity. Therefore, the results suggest that the phenolic compound-rich ethanolic extract exhibits promising antitumor effects. Nonetheless, further studies are needed to enhance its efficacy and selectivity, emphasizing the value of biodiversity for sustainable natural therapies.

 

Downloads

Não há dados estatísticos.

Referências

Afroze, N., Pramodh, S., Hussain, A., Waleed, M., & Vakharia, K. (2020). A review on myricetin as a potential therapeutic candidate for cancer prevention. 3 Biotech, 10(5), Article 211. https://doi.org/10.1007/s13205-020-02207-3

Ain, R., Kuiv, K., Ilina, T., Kovalyova, A., Avidzba, Y., Koshovyi, O., & Tõnu, P. (2024). A Qualitative and Quantitative Analysis of Polyphenolic Compounds in Five Epilobium Spp. With a Possible Potential To Alleviate Benign Prostatic Hyperplasia. ScienceRise: Pharmaceutical Science, 49(3), 37–46. https://doi.org/10.15587/2519-4852.2024.307139

Annevelink, C. E., Sapp, P. A., Petersen, K. S., Shearer, G. C., & Kris-Etherton, P. M. (2023). Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. Journal of Clinical Lipidology, 17(5), 577–586. https://doi.org/10.1016/j.jacl.2023.07.005

Campoccia, D., Ravaioli, S., Santi, S., Mariani, V., Santarcangelo, C., De Filippis, A., Montanaro, L., Arciola, C. R., & Daglia, M. (2021). Exploring the anticancer effects of standardized extracts of poplar-type propolis: In vitro cytotoxicity toward cancer and normal cell lines. Biomedicine & Pharmacotherapy, 141, Article 111895. https://doi.org/10.1016/j.biopha.2021.111895

Carmo, M. A. V., Fidelis, M., Pressete, C. G., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., & Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, Article 108551. https://doi.org/10.1016/j.foodres.2019.108551

Chen, H., Li, M., Zhang, C., Du, W., Shao, H., Feng, Y., Zhang, W., & Yang, S. (2018). Isolation and Identification of the Anti-Oxidant Constituents from Loropetalum chinense (R. Brown) Oliv. Based on UHPLC–Q-TOF-MS/MS. Molecules, 23(7), Article 1720. https://doi.org/10.3390/molecules23071720

Chen, J., Li, G., Sun, C., Peng, F., Yu, L., Chen, Y., Tan, Y., Cao, X., Tang, Y., Xie, X., & Peng, C. (2022). Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytotherapy Research, 36(4), 1545–1575. https://doi.org/10.1002/ptr.7397

Chen, Z., Zhang, R., Shi, W., Li, L., Liu, H., Liu, Z., & Wu, L. (2019). The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. Journal of Agricultural and Food Chemistry, 67(41), 11288–11306. https://doi.org/10.1021/acs.jafc.9b05079

Colacicco, A., Catinella, G., Pinna, C., Pellis, A., Farris, S., Tamborini, L., Dallavalle, S., Molinari, F., Contente, M. L., & Pinto, A. (2023). Flow bioprocessing of citrus glycosides for high-value aglycone preparation. Catalysis Science & Technology, 13, 4348–4352. https://doi.org/10.1039/d3cy00603d

Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants, 9(12), Article 1263. https://doi.org/10.3390/antiox9121263

Costa, H. M., Ramos, V. D., & Gonçalves, R. N. (2023). A Seleção de ácidos graxos em composições de borracha natural (nr): análise teórica através do processo de adsorção com a modelagem molecular. Revista Foco, 16(4), Article e1709. https://doi.org/10.54751/revistafoco.v16n4-085

Dar, R. A., Shahnawaz, M., Ahanger, M. A., & ul Majid, I. (2023). Exploring the Diverse Bioactive Compounds from Medicinal Plants: A Review. The Journal of Phytopharmacology, 12(3), 189–195. https://doi.org/10.31254/phyto.2023.12307

Deepa, P., Hong, M., Sowndhararajan, K., & Kim, S. (2023). A Review of the Role of an Anthocyanin, Cyanidin-3-O-β-glucoside in Obesity-Related Complications. Plants, 12(22), Article 3889. https://doi.org/10.3390/plants12223889

Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), Article 5377. https://doi.org/10.3390/molecules26175377

Díaz-de-Cerio, E., Girón, F., Pérez-Garrido, A., Pereira, A. S. P., Gabaldón-Hernández, J. A., Verardo, V., Segura Carretero, A., & Pérez-Sánchez, H. (2023). Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. International Journal of Molecular Sciences, 24(6), Article 5761. https://doi.org/10.3390/ijms24065761

Dincheva, I., Badjakov, I., & Galunska, B. (2023). New Insights into the Research of Bioactive Compounds from Plant Origins with Nutraceutical and Pharmaceutical Potential. Plants, 12(2), Article 258. https://doi.org/10.3390/plants12020258

Dinh, T. T. N., To, K. V., & Schilling, M. W. (2021). Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat and Muscle Biology, 5(1), 1–16. https://doi.org/10.22175/mmb.12251

Dong, W., Yang, X., Zhang, N., Chen, P., Sun, J., Harnly, J. M., & Zhang, M. (2024). Study of UV–Vis molar absorptivity variation and quantitation of anthocyanins using molar relative response factor. Food Chemistry, 444, Article 138653. https://doi.org/10.1016/j.foodchem.2024.138653

Gao, Y., Fang, L., Wang, X., Lan, R., Wang, M., Du, G., Guan, W., Liu, J., Brennan, M., Guo, H., Brennan, C., & Zhao, H. (2019). Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules, 24(4), Article 788. https://doi.org/10.3390/molecules24040788

Girardelo, J. R., Munari, E. L., Dallorsoleta, J. C. S., Cechinel, G., Goetten, A. L. F., Sales, L. R., Reginatto, F. H., Chaves, V. C., Smaniotto, F. A., Somacal, S., Emanuelli, T., Benech, J. C., Soldi, C., Winter, E., & Conterato, G. M. M. (2020). Bioactive compounds, antioxidant capacity and antitumoral activity of ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Food Research International, 137, Article 109615. https://doi.org/10.1016/j.foodres.2020.109615

Gonçalves, A. C., Gaspar, D., Flores-Félix, J. D., Falcão, A., Alves, G., & Silva, L. R. (2022). Effects of Functional Phenolics Dietary Supplementation on Athletes’ Performance and Recovery: A Review. International Journal of Molecular Sciences, 23(9), Article 4652. https://doi.org/10.3390/ijms23094652

Hamed, A., El Gaafary, M., Yamaguchi, L. F., Stammler, H. G., Salih, L. M., Ziegler, D., Syrovets, T., & Kato, M. J. (2024). Chemical constituents of Coccoloba peltata Schott leaves and their cytotoxic activities. Natural Product Research, 1–7. https://doi.org/10.1080/14786419.2024.2405011

Hossain, R., Jain, D., Khan, R. A., Islam, M. T., Mubarak, M. S., & Saikat, A. S. M. (2022). Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers. Anti-Cancer Agents in Medicinal Chemistry, 22(5), 836–850. https://doi.org/10.2174/1871520621666210623104227

Houël, E., Nardella, F., Jullian, V., Valentin, A., Vonthron-Sénécheau, C., Villa, P., Obrecht, A., Kaiser, M., Bourreau, E., Odonne, G., Fleury, M., Bourdy, G., Eparvier, V., Deharo, E., & Stien, D. (2016). Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians. Journal of Ethnopharmacology, 187, 241–248. https://doi.org/10.1016/j.jep.2016.04.053

Huang, J., Zhou, L., Chen, J., Chen, T., Lei, B., Zheng, N., Wan, X., Xu, J., & Wang, T. (2021). Hyperoside Attenuate Inflammation in HT22 Cells via Upregulating SIRT1 to Activities Wnt/β-Catenin and Sonic Hedgehog Pathways. Neural Plasticity, 2021, Article 8706400. https://doi.org/10.1155/2021/8706400

Imran, M., Gondal, T. A., Atif, M., Shahbaz, M., Qaisarani, T. B., Mughal, M. H., Salehi, B., Martorell, M., & Sharifi‐Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy Research, 34(8), 1812–1828. https://doi.org/10.1002/ptr.6647

Imtiyaz, H., Soni, P., & Yukongdi, V. (2023). Assessing the Consumers’ Purchase Intention and Consumption of Convenience Food in Emerging Economy: The Role of Physical Determinants. Sage Open, 13(1). https://doi.org/10.1177/21582440221148434

Jiang, S., Zhao, X., Liu, C., Dong, Q., Mei, L., Chen, C., Shao, Y., Tao, Y., & Yue, H. (2021). Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. By UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo. Food Chemistry, 344, Article 128568. https://doi.org/10.1016/j.foodchem.2020.128568

Jiang, T., Li, X., Wang, H., Pi, M., Hu, J., Zhu, Z., Zeng, J., Li, B., & Xu, Z. (2024). Identification and quantification of flavonoids in edible dock based on UPLC-qTOF MS/MS and molecular networking. Journal of Food Composition and Analysis, 133, Article 106399. https://doi.org/10.1016/j.jfca.2024.106399

Kamaruddin, N. A., Abdullah, M. N. H., Tan, J. J., Lim, V., Fong, L. Y., Ghafar, S. A. A., & Yong, Y. K. (2022). Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. Evidence-Based Complementary and Alternative Medicine, 2022, Article 3311228. https://doi.org/10.1155/2022/3311228

Khutami, C., Sumiwi, S. A., Ikram, N. K. K., & Muchtaridi, M. (2022). The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. International Journal of Molecular Sciences, 23(4), Article 2056. https://doi.org/10.3390/ijms23042056

Kodentsova, V. M., & Risnik, D. V. (2020a). Micronutrient metabolic networks and multiple micronutrient deficiency: a rationale for the advantages of vitamin-mineral supplements. Trace Elements in Medicine (Moscow), 21(4), 3–20. https://doi.org/10.19112/2413-6174-2020-21-4-3-20

Kodentsova, V. M., & Risnik, D. V. (2020b). Vitamin-mineral supplements for correction of multiple micronutrient deficiency. Meditsinskiy Sovet, 11, 192–200. https://doi.org/10.21518/2079-701X-2020-11-192-200

Krishnaprabu, D. S. (2020). Therapeutic potential of medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry, 9(2), 2228–2233. https://doi.org/10.22271/phyto.2020.v9.i2ak.11184

Kumar, M., Dahuja, A., Tiwari, S., Punia, S., Tak, Y., Amarowicz, R., Bhoite, A. G., Singh, S., Joshi, S., Panesar, P. S., Saini, R. P., Pihlanto, A., Tomar, M., Sharifi-Rad, J., & Kaur, C. (2021). Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry, 353, Article 129431. https://doi.org/10.1016/j.foodchem.2021.129431

Kumar, M., Kumar, D., Sharma, A., Bhadauria, S., Thakur, A., & Bhatia, A. (2024). Micronutrients throughout the Life Cycle: Needs and Functions in Health and Disease. Current Nutrition & Food Science, 20(1), 62–84. https://doi.org/10.2174/1573401319666230420094603

Kumazawa, S., Kurihara, S., Kubota, M., Muto, H., & Hosoya, T. (2024). Anthocyanins and the Antioxidant Capacities of Wild Berries that Grow in Shizuoka, Japan. International Journal of Fruit Science, 24(1), 166–173. https://doi.org/10.1080/15538362.2024.2348716

Li, L., Ma, H., Zhang, Y., Jiang, H., Xia, B., Al Sberi, H., Elhefny, M. A., Lokman, M. S., & Kassab, R. B. (2023). Protocatechuic acid reverses myocardial infarction mediated by β-adrenergic agonist via regulation of Nrf2/HO-1 pathway, inflammatory, apoptotic, and fibrotic events. Journal of Biochemical and Molecular Toxicology, 37(3), Article e2370. https://doi.org/10.1002/jbt.23270

Lima, R. S., Carvalho, A. P. A., & Conte-Junior, C. A. (2023). Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Critical Reviews in Food Science and Nutrition, 63(33), 12453–12475. https://doi.org/10.1080/10408398.2022.2101983

Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients, 10(10), Article 1531. https://doi.org/10.3390/nu10101531

Mar, J. M., Silva, L. S., Moreira, W. P., Biondo, M. M., Pontes, F. L. D., Campos, F. R., Kinupp, V. F., Campelo, P. H., Sanches, E. A., & Bezerra, J. A. (2021). Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chemistry, 356, Article 129723. https://doi.org/10.1016/j.foodchem.2021.129723

Mar, J. M., Silva, L. S., Rabelo, M. S., Muniz, M. P., Nunomura, S. M., Correa, R. F., Kinupp, V. F., Campelo, P. H., Bezerra, J. A., & Sanches, E. A. (2020). Encapsulation of Amazonian Blueberry juices: Evaluation of bioactive compounds and stability. LWT, 124, Article 109152. https://doi.org/10.1016/j.lwt.2020.109152

Melo, E. (2020). Polygonaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Retrieved September 12, 2025, from https://floradobrasil2020.jbrj.gov.br/FB13704

Méndez, D., Escalona-Arranz, J. C., Foubert, K., Matheeussen, A., Van der Auwera, A., Piazza, S., Cuypers, A., Cos, P., & Pieters, L. (2021). Chemical and Pharmacological Potential of Coccoloba cowellii, an Endemic Endangered Plant from Cuba. Molecules, 26(4), Article 935. https://doi.org/10.3390/molecules26040935

Mesquita, L. M. S., Sosa, F. H. B., Contieri, L. S., Marques, P. R., Viganó, J., Coutinho, J. A. P., Dias, A. C. R. V., Ventura, S. P. M., & Rostagno, M. A. (2023). Combining eutectic solvents and food-grade silica to recover and stabilize anthocyanins from grape pomace. Food Chemistry, 406, Article 135093. https://doi.org/10.1016/j.foodchem.2022.135093

Michalak, M., Pierzak, M., Kręcisz, B., & Suliga, E. (2021). Bioactive Compounds for Skin Health: A Review. Nutrients, 13(1), Article 203. https://doi.org/10.3390/nu13010203

Nascimento, P. M., & Scalabrini, H. M. (2020). Benefícios do ômega 3 na prevenção de doença cardiovascular: Revisão integrativa de literatura. International Journal of Nutrology, 13(3), 95–101. https://doi.org/10.1055/s-0040-1718995

Nazari-Khanamiri, F., & Ghasemnejad-Berenji, M. (2023). Quercetin and Heart Health: From Molecular Pathways to Clinical Findings. Journal of Food Biochemistry, 2023, Article 8459095. https://doi.org/10.1155/2023/8459095

Niisato, N., & Marunaka, Y. (2023). Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Frontiers in Nutrition, 10, Article 1175660. https://doi.org/10.3389/fnut.2023.1175660

Oliveira, E. S. C., Pontes, F. L. D., Acho, L. D. R., Rosário, A. S., Silva, B. J. P., Bezerra, J. A., Campos, F. R., Lima, E. S., & Machado, M. B. (2021). qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. Journal of Pharmaceutical and Biomedical Analysis, 201, Article 114109. https://doi.org/10.1016/j.jpba.2021.114109

Oliveira, E. S. C., Pontes, F. L. D., Acho, L. D. R., Silva, B. J. P., Rosário, A. S., Chaves, F. C. M., Campos, F. R., Bezerra, J. A., Lima, E. S., & Machado, M. B. (2024). NMR and multivariate methods: Identification of chemical markers in extracts of pedra-ume-caá and their antiglycation, antioxidant, and enzymatic inhibition activities. Phytochemical Analysis, 35(3), 552–566. https://doi.org/10.1002/pca.3312

Oliveira, P. E. S., Santos, W. S., Conserva, L. M., & Lemos, R. P. L. (2008). Constituintes químicos das folhas e do caule de Coccoloba mollisCasaretto (Polygonaceae). Revista Brasileira de Farmacognosia, 18, 713–717. https://doi.org/10.1590/S0102-695X2008000500014

Paes, L. T., D’Almeida, C. T. S., Carmo, M. A. V., Cruz, L. S., Souza, A. B., Viana, L. M., Maltarollo, V. G., Martino, H. S. D., Lima, G. D. A., Ferreira, M. S. F., Azevedo, L., & Barros, F. A. R. (2024). Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Research International, 176, Article 113739. https://doi.org/10.1016/j.foodres.2023.113739

Peng, W., Wu, Y., Peng, Z., Qi, W., Liu, T., Yang, B., He, D., Liu, Y., & Wang, Y. (2022). Cyanidin-3-glucoside improves the barrier function of retinal pigment epithelium cells by attenuating endoplasmic reticulum stress-induced apoptosis. Food Research International, 157, Article 111313. https://doi.org/10.1016/j.foodres.2022.111313

Perna, M., & Hewlings, S. (2023). Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients, 15(1), Article 30. https://doi.org/10.3390/nu15010030

Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Frontiers in Pharmacology, 13, Article 806470. https://doi.org/10.3389/fphar.2022.806470

Samini, M. (2019). The Neuro-Protective effects of Quercetin. Research Journal of Pharmacy and Technology, 12(2), 561–568. https://doi.org/10.5958/0974-360X.2019.00100.8

Sanches, V. L., Cunha, T. A., Viganó, J., Mesquita, L. M., S. Faccioli, L. H., Breitkreitz, M. C., & Rostagno, M. A. (2022). Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chemistry: X, 14, Article 100262. https://doi.org/10.1016/j.fochx.2022.100262

Sánchez-Capa, M., Corell González, M., & Mestanza-Ramón, C. (2023). Edible Fruits from the Ecuadorian Amazon: Ethnobotany, Physicochemical Characteristics, and Bioactive Components. Plants, 12(20), Article 3635. https://doi.org/10.3390/plants12203635

Sani, M. & Hokmabadi, M. E. (2023). The Effect Of Gallic Acid As A Plant Polyphenol Compound On Oxidative Stress Induced In Alzheimer’s Neurodegenerative Disease. The New Armenian Medical Journal, 17(3), 40–50. https://doi.org/10.56936/18290825-2023.17.3-40

Santos, A. P. L., Caram, A. L. A., & Sinico, M. C. (2022). Efecto terapéutico de los ácidos grasos omega 3 en la prevención y tratamiento de enfermedades crónicas no transmisibles. Research, Society and Development, 11(14), Article e286111433952. https://doi.org/10.33448/rsd-v11i14.33952

Schnitker, F. A., Steingass, C. B., & Schweiggert, R. (2024). Analytical characterization of anthocyanins using trapped ion mobility spectrometry-quadrupole time-of-flight tandem mass spectrometry. Food Chemistry, 459, Article 140200. https://doi.org/10.1016/j.foodchem.2024.140200

Sellem, L., Flourakis, M., Jackson, K. G., Joris, P. J., Lumley, J., Lohner, S., Mensink, R. P., Soedamah-Muthu, S. S., & Lovegrove, J. A. (2022). Impact of Replacement of Individual Dietary SFAs on Circulating Lipids and Other Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Humans. Advances in Nutrition, 13(4), 1200–1225. https://doi.org/10.1093/advances/nmab143

Shifa, S., Puspo, A., Arefin, A., & Mazed, M. (2024). In Vitro Anticancer and Cytotoxic Activity of Ethanolic Extract of Phyllanthus reticulatus Poir. Against Hela Cell Line and Vero Cell Line. Bioequivalence & Bioavailability International Journal, 8(1), Article 000223. https://doi.org/10.23880/beba-16000223

Shramko, V. S., Polonskaya, Y. V., Kashtanova, E. V., Stakhneva, E. M., & Ragino, Y. I. (2020). The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules, 10(8), Article 1127. https://doi.org/10.3390/biom10081127

Shrinet, K., Singh, R. K., Chaurasia, A. K., Tripathi, A., & Kumar, A. (2021). Bioactive compounds and their future therapeutic applications. In R. P. Sinha & D.-P. Häder (Eds.), Natural Bioactive Compounds (pp. 337–362). Academic Press. https://doi.org/10.1016/B978-0-12-820655-3.00017-3

Silva, E. P., Herminio, V. L. Q., Motta, D. N., Soares, M. B. P., Rodrigues, L. A. P., Viana, J. D., Freitas, F. A., Silva, A. P. G., Souza, F. C. A., & Vilas Boas, E. V. B. (2022). The role of phenolic compounds in metabolism and their antioxidant potential. Research, Society and Development, 11(10), Article e297111031750. https://doi.org/10.33448/rsd-v11i10.31750

Sousa, H. M. S., Leal, G. F., Damiani, C., Borges, S. V., Freitas, B. C., & Martins, G. A. S. (2021). Some wild fruits from amazon biodiversity: composition, bioactive compounds, and characteristics. Food Research, 5(5), 17–32. https://doi.org/10.26656/fr.2017.5(5).687

Tavakoli, S., Khalighi-Sigaroodi, F., Dehaghi, N. K., Yaghoobi, M., Hajiaghaee, R., Gholami, A., & Ghafarzadegan, R. (2022). Isolation and purification of apigenin, quercetin and apigenin 7-O-glycoside from Apium graveolens L., Petroselinum crispum (Mill.) Fuss, Allium cepa L., respectively. Journal of Medicinal Plants Journal, 21(83), 72–86. https://doi.org/10.52547/jmp.21.83.72

Thammasut, W., Intaraphairot, T., Chantadee, T., Senarat, S., Patomchaiviwat, V., Chuenbarn, T., & Phaechamud, T. (2023). Antimicrobial and antitumoral activities of saturated fatty acid solutions. Materials Today: Proceedings, 80, 2679–2684. https://doi.org/10.1016/j.matpr.2023.03.769

Tiwari, R., & Shukla, A. K. (2020). Plant metabolites and their role in health benefits: A brief review. Advance Pharmaceutical Journal, 5(2), 47–53. https://doi.org/10.31024/apj.2020.5.2.2

Tuli, H. S., Mistry, H., Kaur, G., Aggarwal, D., Garg, V. K., Mittal, S., Yerer, M. B., Sak, K., & Khan, M. A. (2022). Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets. Anti-Cancer Agents in Medicinal Chemistry, 22(3), 499–514. https://doi.org/10.2174/1871520621666211119085834

Valenzuela, A., Delplanque, B., & Tavella, M. (2011). Stearic acid: a possible substitute for trans fatty acids from industrial origin. Grasas y Aceites, 62(2), 131–138. https://doi.org/10.3989/gya.033910

Vasquez, W. V., Hernández, D. M., del Hierro, J. N., Martin, D., Cano, M. P., & Fornari, T. (2021). Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. The Journal of Supercritical Fluids, 171, Article 105188. https://doi.org/10.1016/j.supflu.2021.105188

Vesga-Jiménez, D. J., Martin, C., Barreto, G. E., Aristizábal-Pachón, A. F., Pinzón, A., & González, J. (2022). Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. International Journal of Molecular Sciences, 23(5), Article 2577. https://doi.org/10.3390/ijms23052577

Viel, A. M., Figueiredo, C. C. M., Granero, F. O., Silva, L. P., Ximenes, V. F., Godoy, T. M., Quintas, L. E. M., & Silva, R. M. G. (2022). Antiglycation, antioxidant and cytotoxicity activities of crude extract of Turnera ulmifolia L. before and after microencapsulation process. Journal of Pharmaceutical and Biomedical Analysis, 219, Article 114975. https://doi.org/10.1016/j.jpba.2022.114975

Wafa, S. A. A. E., Seif-Eldein, N. A., Taie, H. A. A., & Marzouk, M. (2023). Coccoloba uvifera Leaves: Polyphenolic Profile, Cytotoxicity, and Antioxidant Evaluation. ASC Omega, 8(35), 32060–32066. https://doi.org/10.1021/acsomega.3c04025

Wagner, C., Fachinetto, R., Corte, C. L. D., Brito, V. B., Severo, D., Dias, G. O. C., Morel, A. F., Nogueira, C. W., & Rocha, J. B. T. (2006). Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Research, 1107(1), 192–198. https://doi.org/10.1016/j.brainres.2006.05.084

Wang, Q., Wei, H.-C., Zhou, S.-J., Li, Y., Zheng, T.-T., Zhou, C.-Z., & Wan, X.-H. (2022). Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytotherapy Research, 36(7), 2779–2802. https://doi.org/10.1002/ptr.7478

Wei, P., Huang, S., Yang, J., Zhao, M., Chen, Q., Deng, X., Chen, J., & Li, Y. (2024). Identification and characterization of chemical constituents in Mahuang Guizhi Decoction and their metabolites in rat plasma and brain by UPLC-Q-TOF/MS. Chinese Herbal Medicines, 16(3), 466–480. https://doi.org/10.1016/j.chmed.2024.01.006

Xu, L., Liu, Y., Wu, H., & Zhou, A. (2020). Rapid identification of absorbed components and metabolites of Gandou decoction in rat plasma and liver by UPLC-Q-TOF-MSE. Journal of Chromatography B, 1137, Article 121934. https://doi.org/10.1016/j.jchromb.2019.121934

Xu, L., Mu, L.-H., Peng, J., Liu, W.-W., Tan, X., Li, Z.-L., Wang, D.-X., & Liu, P. (2016). UPLC-Q-TOF-MSE analysis of the constituents of Ding-Zhi-Xiao-Wan, a traditional Chinese antidepressant, in normal and depressive rats. Journal of Chromatography B, 1026, 36–42. https://doi.org/10.1016/j.jchromb.2015.07.043

Xu, L., Zaky, M. Y., Yousuf, W., Ullah, A., Abdelbaset, G. R., Zhang, Y., Ahmed, O. M., Liu, S., & Liu, H. (2021). The Anticancer Potential of Apigenin Via Immunoregulation. Current Pharmaceutical Design, 27(4), 479–489. https://doi.org/10.2174/1381612826666200713171137

Yin, H., Wang, Y., Li, Y., Wu, M., Yang, X., Lu, S., Liao, Y., Yin, J., & Li, C. (2024). Characterization of the varied output from the anthocyanin pathway in Phalaenopsis-type Dendrobium hybrids and its relationship with flower coloration. Scientia Horticulturae, 325, Article 112697. https://doi.org/10.1016/j.scienta.2023.112697

Zeng, Y.-J., Xu, P., Yang, H.-R., Zong, M.-H., & Lou, W.-Y. (2018). Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. LWT, 95, 316–325. https://doi.org/10.1016/j.lwt.2018.04.087

Zgoła-Grześkowiak, A., & Grześkowiak, T. (2021). Introduction: Bioactive Compounds and Elements in Human Nutrition. In M. Jeszka-Skowron, A. Zgoła-Grześkowiak, T. Grześkowiak, & A. Ramakrishna (Eds.), Analytical Methods in the Determination of Bioactive Compounds and Elements in Food (pp. 1–9). Springer. https://doi.org/10.1007/978-3-030-61879-7_1

Zhang, X., Zhang, K., Wang, Y., & Ma, R. (2020). Effects of Myricitrin and Relevant Molecular Mechanisms. Current Stem Cell Research & Therapy, 15(1), 11–17. https://doi.org/10.2174/1574888X14666181126103338

Zhu, X., Ouyang, W., Lan, Y., Xiao, H., Tang, L., Liu, G., Feng, K., Zhang, L., Song, M., & Cao, Y. (2020). Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Bioscience, 35, Article 100574. https://doi.org/10.1016/j.fbio.2020.100574

Downloads

Publicado

2025-10-06

Como Citar

Soares, J. V. S., Rocha, D. Q., Oliveira, E. S. C., Salvador, A. M., Cavalcante, D. N., Santos, E. O. dos, Gonzales, P. L. S., Cruz, L. da S., Azevedo, L., Sanches, E. A., Campelo, P. H., Kinupp, V. F., Corrêa, R. F., & Bezerra, J. de A. (2025). Coccoloba marginata Benth fruits: a rich source of bioactive compounds. Food Science and Technology, 45. https://doi.org/10.5327/fst.525

Edição

Seção

Artigos Originais