Coccoloba marginata Benth fruits: a rich source of bioactive compounds
DOI:
https://doi.org/10.5327/fst.525Keywords:
Polygonaceae, Cipó-pau, Phenolic acids, Flavonoids, Cytotoxic activityAbstract
The aim of the present study was to investigate the chemical profiles of the fruit extracts of Coccoloba marginata Benth and the cytotoxic activity of the ethanolic extract against two cell lines, HCT8 (human colon carcinoma) and A549 (lung adenocarcinoma). The ethanolic extract was found to contain gallic and protocatechuic acids, flavonoids derived from quercetin and myricetin, and anthocyanins. This extract inhibited the growth of cancer cells (GI50: 123.2 g GAE/mL for A549 and GI50: 44.15 g GAE/mL for HCT8, where GAE stands for Gallic Acid Equivalent) without cytotoxic effects on normal cells (GI50: 145.9 g GAE/mL for human umbilical vein endothelial cell). However, the selectivity index (< 1) indicated low specificity. Therefore, the results suggest that the phenolic compound-rich ethanolic extract exhibits promising antitumor effects. Nonetheless, further studies are needed to enhance its efficacy and selectivity, emphasizing the value of biodiversity for sustainable natural therapies.
Downloads
References
Afroze, N., Pramodh, S., Hussain, A., Waleed, M., & Vakharia, K. (2020). A review on myricetin as a potential therapeutic candidate for cancer prevention. 3 Biotech, 10(5), Article 211. https://doi.org/10.1007/s13205-020-02207-3
Ain, R., Kuiv, K., Ilina, T., Kovalyova, A., Avidzba, Y., Koshovyi, O., & Tõnu, P. (2024). A Qualitative and Quantitative Analysis of Polyphenolic Compounds in Five Epilobium Spp. With a Possible Potential To Alleviate Benign Prostatic Hyperplasia. ScienceRise: Pharmaceutical Science, 49(3), 37–46. https://doi.org/10.15587/2519-4852.2024.307139
Annevelink, C. E., Sapp, P. A., Petersen, K. S., Shearer, G. C., & Kris-Etherton, P. M. (2023). Diet-derived and diet-related endogenously produced palmitic acid: Effects on metabolic regulation and cardiovascular disease risk. Journal of Clinical Lipidology, 17(5), 577–586. https://doi.org/10.1016/j.jacl.2023.07.005
Campoccia, D., Ravaioli, S., Santi, S., Mariani, V., Santarcangelo, C., De Filippis, A., Montanaro, L., Arciola, C. R., & Daglia, M. (2021). Exploring the anticancer effects of standardized extracts of poplar-type propolis: In vitro cytotoxicity toward cancer and normal cell lines. Biomedicine & Pharmacotherapy, 141, Article 111895. https://doi.org/10.1016/j.biopha.2021.111895
Carmo, M. A. V., Fidelis, M., Pressete, C. G., Marques, M. J., Castro-Gamero, A. M., Myoda, T., Granato, D., & Azevedo, L. (2019). Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 125, Article 108551. https://doi.org/10.1016/j.foodres.2019.108551
Chen, H., Li, M., Zhang, C., Du, W., Shao, H., Feng, Y., Zhang, W., & Yang, S. (2018). Isolation and Identification of the Anti-Oxidant Constituents from Loropetalum chinense (R. Brown) Oliv. Based on UHPLC–Q-TOF-MS/MS. Molecules, 23(7), Article 1720. https://doi.org/10.3390/molecules23071720
Chen, J., Li, G., Sun, C., Peng, F., Yu, L., Chen, Y., Tan, Y., Cao, X., Tang, Y., Xie, X., & Peng, C. (2022). Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytotherapy Research, 36(4), 1545–1575. https://doi.org/10.1002/ptr.7397
Chen, Z., Zhang, R., Shi, W., Li, L., Liu, H., Liu, Z., & Wu, L. (2019). The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. Journal of Agricultural and Food Chemistry, 67(41), 11288–11306. https://doi.org/10.1021/acs.jafc.9b05079
Colacicco, A., Catinella, G., Pinna, C., Pellis, A., Farris, S., Tamborini, L., Dallavalle, S., Molinari, F., Contente, M. L., & Pinto, A. (2023). Flow bioprocessing of citrus glycosides for high-value aglycone preparation. Catalysis Science & Technology, 13, 4348–4352. https://doi.org/10.1039/d3cy00603d
Cosme, P., Rodríguez, A. B., Espino, J., & Garrido, M. (2020). Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants, 9(12), Article 1263. https://doi.org/10.3390/antiox9121263
Costa, H. M., Ramos, V. D., & Gonçalves, R. N. (2023). A Seleção de ácidos graxos em composições de borracha natural (nr): análise teórica através do processo de adsorção com a modelagem molecular. Revista Foco, 16(4), Article e1709. https://doi.org/10.54751/revistafoco.v16n4-085
Dar, R. A., Shahnawaz, M., Ahanger, M. A., & ul Majid, I. (2023). Exploring the Diverse Bioactive Compounds from Medicinal Plants: A Review. The Journal of Phytopharmacology, 12(3), 189–195. https://doi.org/10.31254/phyto.2023.12307
Deepa, P., Hong, M., Sowndhararajan, K., & Kim, S. (2023). A Review of the Role of an Anthocyanin, Cyanidin-3-O-β-glucoside in Obesity-Related Complications. Plants, 12(22), Article 3889. https://doi.org/10.3390/plants12223889
Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), Article 5377. https://doi.org/10.3390/molecules26175377
Díaz-de-Cerio, E., Girón, F., Pérez-Garrido, A., Pereira, A. S. P., Gabaldón-Hernández, J. A., Verardo, V., Segura Carretero, A., & Pérez-Sánchez, H. (2023). Fishing the Targets of Bioactive Compounds from Psidium guajava L. Leaves in the Context of Diabetes. International Journal of Molecular Sciences, 24(6), Article 5761. https://doi.org/10.3390/ijms24065761
Dincheva, I., Badjakov, I., & Galunska, B. (2023). New Insights into the Research of Bioactive Compounds from Plant Origins with Nutraceutical and Pharmaceutical Potential. Plants, 12(2), Article 258. https://doi.org/10.3390/plants12020258
Dinh, T. T. N., To, K. V., & Schilling, M. W. (2021). Fatty Acid Composition of Meat Animals as Flavor Precursors. Meat and Muscle Biology, 5(1), 1–16. https://doi.org/10.22175/mmb.12251
Dong, W., Yang, X., Zhang, N., Chen, P., Sun, J., Harnly, J. M., & Zhang, M. (2024). Study of UV–Vis molar absorptivity variation and quantitation of anthocyanins using molar relative response factor. Food Chemistry, 444, Article 138653. https://doi.org/10.1016/j.foodchem.2024.138653
Gao, Y., Fang, L., Wang, X., Lan, R., Wang, M., Du, G., Guan, W., Liu, J., Brennan, M., Guo, H., Brennan, C., & Zhao, H. (2019). Antioxidant Activity Evaluation of Dietary Flavonoid Hyperoside Using Saccharomyces Cerevisiae as a Model. Molecules, 24(4), Article 788. https://doi.org/10.3390/molecules24040788
Girardelo, J. R., Munari, E. L., Dallorsoleta, J. C. S., Cechinel, G., Goetten, A. L. F., Sales, L. R., Reginatto, F. H., Chaves, V. C., Smaniotto, F. A., Somacal, S., Emanuelli, T., Benech, J. C., Soldi, C., Winter, E., & Conterato, G. M. M. (2020). Bioactive compounds, antioxidant capacity and antitumoral activity of ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Food Research International, 137, Article 109615. https://doi.org/10.1016/j.foodres.2020.109615
Gonçalves, A. C., Gaspar, D., Flores-Félix, J. D., Falcão, A., Alves, G., & Silva, L. R. (2022). Effects of Functional Phenolics Dietary Supplementation on Athletes’ Performance and Recovery: A Review. International Journal of Molecular Sciences, 23(9), Article 4652. https://doi.org/10.3390/ijms23094652
Hamed, A., El Gaafary, M., Yamaguchi, L. F., Stammler, H. G., Salih, L. M., Ziegler, D., Syrovets, T., & Kato, M. J. (2024). Chemical constituents of Coccoloba peltata Schott leaves and their cytotoxic activities. Natural Product Research, 1–7. https://doi.org/10.1080/14786419.2024.2405011
Hossain, R., Jain, D., Khan, R. A., Islam, M. T., Mubarak, M. S., & Saikat, A. S. M. (2022). Natural-Derived Molecules as a Potential Adjuvant in Chemotherapy: Normal Cell Protectors and Cancer Cell Sensitizers. Anti-Cancer Agents in Medicinal Chemistry, 22(5), 836–850. https://doi.org/10.2174/1871520621666210623104227
Houël, E., Nardella, F., Jullian, V., Valentin, A., Vonthron-Sénécheau, C., Villa, P., Obrecht, A., Kaiser, M., Bourreau, E., Odonne, G., Fleury, M., Bourdy, G., Eparvier, V., Deharo, E., & Stien, D. (2016). Wayanin and guaijaverin, two active metabolites found in a Psidium acutangulum Mart. ex DC (syn. P. persoonii McVaugh) (Myrtaceae) antimalarial decoction from the Wayana Amerindians. Journal of Ethnopharmacology, 187, 241–248. https://doi.org/10.1016/j.jep.2016.04.053
Huang, J., Zhou, L., Chen, J., Chen, T., Lei, B., Zheng, N., Wan, X., Xu, J., & Wang, T. (2021). Hyperoside Attenuate Inflammation in HT22 Cells via Upregulating SIRT1 to Activities Wnt/β-Catenin and Sonic Hedgehog Pathways. Neural Plasticity, 2021, Article 8706400. https://doi.org/10.1155/2021/8706400
Imran, M., Gondal, T. A., Atif, M., Shahbaz, M., Qaisarani, T. B., Mughal, M. H., Salehi, B., Martorell, M., & Sharifi‐Rad, J. (2020). Apigenin as an anticancer agent. Phytotherapy Research, 34(8), 1812–1828. https://doi.org/10.1002/ptr.6647
Imtiyaz, H., Soni, P., & Yukongdi, V. (2023). Assessing the Consumers’ Purchase Intention and Consumption of Convenience Food in Emerging Economy: The Role of Physical Determinants. Sage Open, 13(1). https://doi.org/10.1177/21582440221148434
Jiang, S., Zhao, X., Liu, C., Dong, Q., Mei, L., Chen, C., Shao, Y., Tao, Y., & Yue, H. (2021). Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. By UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo. Food Chemistry, 344, Article 128568. https://doi.org/10.1016/j.foodchem.2020.128568
Jiang, T., Li, X., Wang, H., Pi, M., Hu, J., Zhu, Z., Zeng, J., Li, B., & Xu, Z. (2024). Identification and quantification of flavonoids in edible dock based on UPLC-qTOF MS/MS and molecular networking. Journal of Food Composition and Analysis, 133, Article 106399. https://doi.org/10.1016/j.jfca.2024.106399
Kamaruddin, N. A., Abdullah, M. N. H., Tan, J. J., Lim, V., Fong, L. Y., Ghafar, S. A. A., & Yong, Y. K. (2022). Vascular Protective Effect and Its Possible Mechanism of Action on Selected Active Phytocompounds: A Review. Evidence-Based Complementary and Alternative Medicine, 2022, Article 3311228. https://doi.org/10.1155/2022/3311228
Khutami, C., Sumiwi, S. A., Ikram, N. K. K., & Muchtaridi, M. (2022). The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. International Journal of Molecular Sciences, 23(4), Article 2056. https://doi.org/10.3390/ijms23042056
Kodentsova, V. M., & Risnik, D. V. (2020a). Micronutrient metabolic networks and multiple micronutrient deficiency: a rationale for the advantages of vitamin-mineral supplements. Trace Elements in Medicine (Moscow), 21(4), 3–20. https://doi.org/10.19112/2413-6174-2020-21-4-3-20
Kodentsova, V. M., & Risnik, D. V. (2020b). Vitamin-mineral supplements for correction of multiple micronutrient deficiency. Meditsinskiy Sovet, 11, 192–200. https://doi.org/10.21518/2079-701X-2020-11-192-200
Krishnaprabu, D. S. (2020). Therapeutic potential of medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry, 9(2), 2228–2233. https://doi.org/10.22271/phyto.2020.v9.i2ak.11184
Kumar, M., Dahuja, A., Tiwari, S., Punia, S., Tak, Y., Amarowicz, R., Bhoite, A. G., Singh, S., Joshi, S., Panesar, P. S., Saini, R. P., Pihlanto, A., Tomar, M., Sharifi-Rad, J., & Kaur, C. (2021). Recent trends in extraction of plant bioactives using green technologies: A review. Food Chemistry, 353, Article 129431. https://doi.org/10.1016/j.foodchem.2021.129431
Kumar, M., Kumar, D., Sharma, A., Bhadauria, S., Thakur, A., & Bhatia, A. (2024). Micronutrients throughout the Life Cycle: Needs and Functions in Health and Disease. Current Nutrition & Food Science, 20(1), 62–84. https://doi.org/10.2174/1573401319666230420094603
Kumazawa, S., Kurihara, S., Kubota, M., Muto, H., & Hosoya, T. (2024). Anthocyanins and the Antioxidant Capacities of Wild Berries that Grow in Shizuoka, Japan. International Journal of Fruit Science, 24(1), 166–173. https://doi.org/10.1080/15538362.2024.2348716
Li, L., Ma, H., Zhang, Y., Jiang, H., Xia, B., Al Sberi, H., Elhefny, M. A., Lokman, M. S., & Kassab, R. B. (2023). Protocatechuic acid reverses myocardial infarction mediated by β-adrenergic agonist via regulation of Nrf2/HO-1 pathway, inflammatory, apoptotic, and fibrotic events. Journal of Biochemical and Molecular Toxicology, 37(3), Article e2370. https://doi.org/10.1002/jbt.23270
Lima, R. S., Carvalho, A. P. A., & Conte-Junior, C. A. (2023). Health from Brazilian Amazon food wastes: Bioactive compounds, antioxidants, antimicrobials, and potentials against cancer and oral diseases. Critical Reviews in Food Science and Nutrition, 63(33), 12453–12475. https://doi.org/10.1080/10408398.2022.2101983
Maggini, S., Pierre, A., & Calder, P. C. (2018). Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients, 10(10), Article 1531. https://doi.org/10.3390/nu10101531
Mar, J. M., Silva, L. S., Moreira, W. P., Biondo, M. M., Pontes, F. L. D., Campos, F. R., Kinupp, V. F., Campelo, P. H., Sanches, E. A., & Bezerra, J. A. (2021). Edible flowers from Theobroma speciosum: Aqueous extract rich in antioxidant compounds. Food Chemistry, 356, Article 129723. https://doi.org/10.1016/j.foodchem.2021.129723
Mar, J. M., Silva, L. S., Rabelo, M. S., Muniz, M. P., Nunomura, S. M., Correa, R. F., Kinupp, V. F., Campelo, P. H., Bezerra, J. A., & Sanches, E. A. (2020). Encapsulation of Amazonian Blueberry juices: Evaluation of bioactive compounds and stability. LWT, 124, Article 109152. https://doi.org/10.1016/j.lwt.2020.109152
Melo, E. (2020). Polygonaceae in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. Retrieved September 12, 2025, from https://floradobrasil2020.jbrj.gov.br/FB13704
Méndez, D., Escalona-Arranz, J. C., Foubert, K., Matheeussen, A., Van der Auwera, A., Piazza, S., Cuypers, A., Cos, P., & Pieters, L. (2021). Chemical and Pharmacological Potential of Coccoloba cowellii, an Endemic Endangered Plant from Cuba. Molecules, 26(4), Article 935. https://doi.org/10.3390/molecules26040935
Mesquita, L. M. S., Sosa, F. H. B., Contieri, L. S., Marques, P. R., Viganó, J., Coutinho, J. A. P., Dias, A. C. R. V., Ventura, S. P. M., & Rostagno, M. A. (2023). Combining eutectic solvents and food-grade silica to recover and stabilize anthocyanins from grape pomace. Food Chemistry, 406, Article 135093. https://doi.org/10.1016/j.foodchem.2022.135093
Michalak, M., Pierzak, M., Kręcisz, B., & Suliga, E. (2021). Bioactive Compounds for Skin Health: A Review. Nutrients, 13(1), Article 203. https://doi.org/10.3390/nu13010203
Nascimento, P. M., & Scalabrini, H. M. (2020). Benefícios do ômega 3 na prevenção de doença cardiovascular: Revisão integrativa de literatura. International Journal of Nutrology, 13(3), 95–101. https://doi.org/10.1055/s-0040-1718995
Nazari-Khanamiri, F., & Ghasemnejad-Berenji, M. (2023). Quercetin and Heart Health: From Molecular Pathways to Clinical Findings. Journal of Food Biochemistry, 2023, Article 8459095. https://doi.org/10.1155/2023/8459095
Niisato, N., & Marunaka, Y. (2023). Therapeutic potential of multifunctional myricetin for treatment of type 2 diabetes mellitus. Frontiers in Nutrition, 10, Article 1175660. https://doi.org/10.3389/fnut.2023.1175660
Oliveira, E. S. C., Pontes, F. L. D., Acho, L. D. R., Rosário, A. S., Silva, B. J. P., Bezerra, J. A., Campos, F. R., Lima, E. S., & Machado, M. B. (2021). qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. Journal of Pharmaceutical and Biomedical Analysis, 201, Article 114109. https://doi.org/10.1016/j.jpba.2021.114109
Oliveira, E. S. C., Pontes, F. L. D., Acho, L. D. R., Silva, B. J. P., Rosário, A. S., Chaves, F. C. M., Campos, F. R., Bezerra, J. A., Lima, E. S., & Machado, M. B. (2024). NMR and multivariate methods: Identification of chemical markers in extracts of pedra-ume-caá and their antiglycation, antioxidant, and enzymatic inhibition activities. Phytochemical Analysis, 35(3), 552–566. https://doi.org/10.1002/pca.3312
Oliveira, P. E. S., Santos, W. S., Conserva, L. M., & Lemos, R. P. L. (2008). Constituintes químicos das folhas e do caule de Coccoloba mollisCasaretto (Polygonaceae). Revista Brasileira de Farmacognosia, 18, 713–717. https://doi.org/10.1590/S0102-695X2008000500014
Paes, L. T., D’Almeida, C. T. S., Carmo, M. A. V., Cruz, L. S., Souza, A. B., Viana, L. M., Maltarollo, V. G., Martino, H. S. D., Lima, G. D. A., Ferreira, M. S. F., Azevedo, L., & Barros, F. A. R. (2024). Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Research International, 176, Article 113739. https://doi.org/10.1016/j.foodres.2023.113739
Peng, W., Wu, Y., Peng, Z., Qi, W., Liu, T., Yang, B., He, D., Liu, Y., & Wang, Y. (2022). Cyanidin-3-glucoside improves the barrier function of retinal pigment epithelium cells by attenuating endoplasmic reticulum stress-induced apoptosis. Food Research International, 157, Article 111313. https://doi.org/10.1016/j.foodres.2022.111313
Perna, M., & Hewlings, S. (2023). Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients, 15(1), Article 30. https://doi.org/10.3390/nu15010030
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Frontiers in Pharmacology, 13, Article 806470. https://doi.org/10.3389/fphar.2022.806470
Samini, M. (2019). The Neuro-Protective effects of Quercetin. Research Journal of Pharmacy and Technology, 12(2), 561–568. https://doi.org/10.5958/0974-360X.2019.00100.8
Sanches, V. L., Cunha, T. A., Viganó, J., Mesquita, L. M., S. Faccioli, L. H., Breitkreitz, M. C., & Rostagno, M. A. (2022). Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chemistry: X, 14, Article 100262. https://doi.org/10.1016/j.fochx.2022.100262
Sánchez-Capa, M., Corell González, M., & Mestanza-Ramón, C. (2023). Edible Fruits from the Ecuadorian Amazon: Ethnobotany, Physicochemical Characteristics, and Bioactive Components. Plants, 12(20), Article 3635. https://doi.org/10.3390/plants12203635
Sani, M. & Hokmabadi, M. E. (2023). The Effect Of Gallic Acid As A Plant Polyphenol Compound On Oxidative Stress Induced In Alzheimer’s Neurodegenerative Disease. The New Armenian Medical Journal, 17(3), 40–50. https://doi.org/10.56936/18290825-2023.17.3-40
Santos, A. P. L., Caram, A. L. A., & Sinico, M. C. (2022). Efecto terapéutico de los ácidos grasos omega 3 en la prevención y tratamiento de enfermedades crónicas no transmisibles. Research, Society and Development, 11(14), Article e286111433952. https://doi.org/10.33448/rsd-v11i14.33952
Schnitker, F. A., Steingass, C. B., & Schweiggert, R. (2024). Analytical characterization of anthocyanins using trapped ion mobility spectrometry-quadrupole time-of-flight tandem mass spectrometry. Food Chemistry, 459, Article 140200. https://doi.org/10.1016/j.foodchem.2024.140200
Sellem, L., Flourakis, M., Jackson, K. G., Joris, P. J., Lumley, J., Lohner, S., Mensink, R. P., Soedamah-Muthu, S. S., & Lovegrove, J. A. (2022). Impact of Replacement of Individual Dietary SFAs on Circulating Lipids and Other Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Humans. Advances in Nutrition, 13(4), 1200–1225. https://doi.org/10.1093/advances/nmab143
Shifa, S., Puspo, A., Arefin, A., & Mazed, M. (2024). In Vitro Anticancer and Cytotoxic Activity of Ethanolic Extract of Phyllanthus reticulatus Poir. Against Hela Cell Line and Vero Cell Line. Bioequivalence & Bioavailability International Journal, 8(1), Article 000223. https://doi.org/10.23880/beba-16000223
Shramko, V. S., Polonskaya, Y. V., Kashtanova, E. V., Stakhneva, E. M., & Ragino, Y. I. (2020). The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules, 10(8), Article 1127. https://doi.org/10.3390/biom10081127
Shrinet, K., Singh, R. K., Chaurasia, A. K., Tripathi, A., & Kumar, A. (2021). Bioactive compounds and their future therapeutic applications. In R. P. Sinha & D.-P. Häder (Eds.), Natural Bioactive Compounds (pp. 337–362). Academic Press. https://doi.org/10.1016/B978-0-12-820655-3.00017-3
Silva, E. P., Herminio, V. L. Q., Motta, D. N., Soares, M. B. P., Rodrigues, L. A. P., Viana, J. D., Freitas, F. A., Silva, A. P. G., Souza, F. C. A., & Vilas Boas, E. V. B. (2022). The role of phenolic compounds in metabolism and their antioxidant potential. Research, Society and Development, 11(10), Article e297111031750. https://doi.org/10.33448/rsd-v11i10.31750
Sousa, H. M. S., Leal, G. F., Damiani, C., Borges, S. V., Freitas, B. C., & Martins, G. A. S. (2021). Some wild fruits from amazon biodiversity: composition, bioactive compounds, and characteristics. Food Research, 5(5), 17–32. https://doi.org/10.26656/fr.2017.5(5).687
Tavakoli, S., Khalighi-Sigaroodi, F., Dehaghi, N. K., Yaghoobi, M., Hajiaghaee, R., Gholami, A., & Ghafarzadegan, R. (2022). Isolation and purification of apigenin, quercetin and apigenin 7-O-glycoside from Apium graveolens L., Petroselinum crispum (Mill.) Fuss, Allium cepa L., respectively. Journal of Medicinal Plants Journal, 21(83), 72–86. https://doi.org/10.52547/jmp.21.83.72
Thammasut, W., Intaraphairot, T., Chantadee, T., Senarat, S., Patomchaiviwat, V., Chuenbarn, T., & Phaechamud, T. (2023). Antimicrobial and antitumoral activities of saturated fatty acid solutions. Materials Today: Proceedings, 80, 2679–2684. https://doi.org/10.1016/j.matpr.2023.03.769
Tiwari, R., & Shukla, A. K. (2020). Plant metabolites and their role in health benefits: A brief review. Advance Pharmaceutical Journal, 5(2), 47–53. https://doi.org/10.31024/apj.2020.5.2.2
Tuli, H. S., Mistry, H., Kaur, G., Aggarwal, D., Garg, V. K., Mittal, S., Yerer, M. B., Sak, K., & Khan, M. A. (2022). Gallic Acid: A Dietary Polyphenol that Exhibits Anti-neoplastic Activities by Modulating Multiple Oncogenic Targets. Anti-Cancer Agents in Medicinal Chemistry, 22(3), 499–514. https://doi.org/10.2174/1871520621666211119085834
Valenzuela, A., Delplanque, B., & Tavella, M. (2011). Stearic acid: a possible substitute for trans fatty acids from industrial origin. Grasas y Aceites, 62(2), 131–138. https://doi.org/10.3989/gya.033910
Vasquez, W. V., Hernández, D. M., del Hierro, J. N., Martin, D., Cano, M. P., & Fornari, T. (2021). Supercritical carbon dioxide extraction of oil and minor lipid compounds of cake byproduct from Brazil nut (Bertholletia excelsa) beverage production. The Journal of Supercritical Fluids, 171, Article 105188. https://doi.org/10.1016/j.supflu.2021.105188
Vesga-Jiménez, D. J., Martin, C., Barreto, G. E., Aristizábal-Pachón, A. F., Pinzón, A., & González, J. (2022). Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. International Journal of Molecular Sciences, 23(5), Article 2577. https://doi.org/10.3390/ijms23052577
Viel, A. M., Figueiredo, C. C. M., Granero, F. O., Silva, L. P., Ximenes, V. F., Godoy, T. M., Quintas, L. E. M., & Silva, R. M. G. (2022). Antiglycation, antioxidant and cytotoxicity activities of crude extract of Turnera ulmifolia L. before and after microencapsulation process. Journal of Pharmaceutical and Biomedical Analysis, 219, Article 114975. https://doi.org/10.1016/j.jpba.2022.114975
Wafa, S. A. A. E., Seif-Eldein, N. A., Taie, H. A. A., & Marzouk, M. (2023). Coccoloba uvifera Leaves: Polyphenolic Profile, Cytotoxicity, and Antioxidant Evaluation. ASC Omega, 8(35), 32060–32066. https://doi.org/10.1021/acsomega.3c04025
Wagner, C., Fachinetto, R., Corte, C. L. D., Brito, V. B., Severo, D., Dias, G. O. C., Morel, A. F., Nogueira, C. W., & Rocha, J. B. T. (2006). Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Research, 1107(1), 192–198. https://doi.org/10.1016/j.brainres.2006.05.084
Wang, Q., Wei, H.-C., Zhou, S.-J., Li, Y., Zheng, T.-T., Zhou, C.-Z., & Wan, X.-H. (2022). Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytotherapy Research, 36(7), 2779–2802. https://doi.org/10.1002/ptr.7478
Wei, P., Huang, S., Yang, J., Zhao, M., Chen, Q., Deng, X., Chen, J., & Li, Y. (2024). Identification and characterization of chemical constituents in Mahuang Guizhi Decoction and their metabolites in rat plasma and brain by UPLC-Q-TOF/MS. Chinese Herbal Medicines, 16(3), 466–480. https://doi.org/10.1016/j.chmed.2024.01.006
Xu, L., Liu, Y., Wu, H., & Zhou, A. (2020). Rapid identification of absorbed components and metabolites of Gandou decoction in rat plasma and liver by UPLC-Q-TOF-MSE. Journal of Chromatography B, 1137, Article 121934. https://doi.org/10.1016/j.jchromb.2019.121934
Xu, L., Mu, L.-H., Peng, J., Liu, W.-W., Tan, X., Li, Z.-L., Wang, D.-X., & Liu, P. (2016). UPLC-Q-TOF-MSE analysis of the constituents of Ding-Zhi-Xiao-Wan, a traditional Chinese antidepressant, in normal and depressive rats. Journal of Chromatography B, 1026, 36–42. https://doi.org/10.1016/j.jchromb.2015.07.043
Xu, L., Zaky, M. Y., Yousuf, W., Ullah, A., Abdelbaset, G. R., Zhang, Y., Ahmed, O. M., Liu, S., & Liu, H. (2021). The Anticancer Potential of Apigenin Via Immunoregulation. Current Pharmaceutical Design, 27(4), 479–489. https://doi.org/10.2174/1381612826666200713171137
Yin, H., Wang, Y., Li, Y., Wu, M., Yang, X., Lu, S., Liao, Y., Yin, J., & Li, C. (2024). Characterization of the varied output from the anthocyanin pathway in Phalaenopsis-type Dendrobium hybrids and its relationship with flower coloration. Scientia Horticulturae, 325, Article 112697. https://doi.org/10.1016/j.scienta.2023.112697
Zeng, Y.-J., Xu, P., Yang, H.-R., Zong, M.-H., & Lou, W.-Y. (2018). Purification of anthocyanins from saskatoon berries and their microencapsulation in deep eutectic solvents. LWT, 95, 316–325. https://doi.org/10.1016/j.lwt.2018.04.087
Zgoła-Grześkowiak, A., & Grześkowiak, T. (2021). Introduction: Bioactive Compounds and Elements in Human Nutrition. In M. Jeszka-Skowron, A. Zgoła-Grześkowiak, T. Grześkowiak, & A. Ramakrishna (Eds.), Analytical Methods in the Determination of Bioactive Compounds and Elements in Food (pp. 1–9). Springer. https://doi.org/10.1007/978-3-030-61879-7_1
Zhang, X., Zhang, K., Wang, Y., & Ma, R. (2020). Effects of Myricitrin and Relevant Molecular Mechanisms. Current Stem Cell Research & Therapy, 15(1), 11–17. https://doi.org/10.2174/1574888X14666181126103338
Zhu, X., Ouyang, W., Lan, Y., Xiao, H., Tang, L., Liu, G., Feng, K., Zhang, L., Song, M., & Cao, Y. (2020). Anti-hyperglycemic and liver protective effects of flavonoids from Psidium guajava L. (guava) leaf in diabetic mice. Food Bioscience, 35, Article 100574. https://doi.org/10.1016/j.fbio.2020.100574