Survival of Acinetobacter spp. isolated from food to simulated gastrointestinal conditions

Autores

  • Ricardo Campos Monteiro Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Laboratório de Microbiologia, Rio de Janeiro, Rio de Janeiro, Brazil. https://orcid.org/0000-0002-8795-6608
  • Michel Santos Gomes do Nascimento Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Laboratório de Microbiologia, Rio de Janeiro, Rio de Janeiro, Brazil. https://orcid.org/0009-0003-4781-0895
  • Janaína dos Santos Nascimento Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Laboratório de Microbiologia, Rio de Janeiro, Rio de Janeiro, Brazil. https://orcid.org/0000-0001-8822-8381

DOI:

https://doi.org/10.5327/fst.497

Palavras-chave:

gastrointestinal digestion, opportunistic foodborne pathogen, goat milk, ready-to-eat salad, A. baumannii

Resumo

In recent years, Acinetobacter isolates have frequently been obtained from foods of different origins, and the relevance of their presence and their role as a foodborne pathogen are rarely discussed. Surviving the passage through the gastrointestinal system is paramount to its intestinal colonization and, consequently, to triggering foodborne illnesses and other subsequent infections in the consumer. This work evaluated food isolates of Acinetobacter spp. (from ready-to-eat salads and goat milk) for their ability to survive in simulated gastrointestinal conditions. The isolates were exposed for 40 min at pH 2.0 in the presence of pepsin to simulate gastric conditions, followed by subsequent exposure to simulated intestinal fluid (with bile salts and trypsin) for 120 min. In general, reductions of 4.2–48.1% in viable counts of isolates were observed after exposure to the simulated gastrointestinal conditions. It is worth noting that six isolates showed a population reduction of less than 1 log CFU.mL-1. This study points out that some isolates of Acinetobacter spp. found in food could reach the intestine after ingestion of contaminated food, remaining viable and at high counts, therefore posing a potential risk as a food pathogen, being able to develop infections in consumers, especially in the most vulnerable ones.

Downloads

Não há dados estatísticos.

Referências

Ababneh, Q., Al-Rousan, E., & Jaradat, Z. (2022). Fresh produce as a potential vehicle for transmission of Acinetobacter baumannii. International Journal of Food Contamination, 9, Article 5. https://doi.org/10.1186/s40550-022-00092-7

Akritidou, T., Akkermans, S., Gaspari, S., Azraini, N. D., Smet, C., Van De Wiele, T., & Van Impe, J. F. M. (2022). Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. Innovative Food Science and Emerging Technologies, 82, Article 103161. https://doi.org/10.1016/j.ifset.2022.103161

Amorim, A. M. B., & Nascimento, J. S. (2017). Acinetobacter: an underrated foodborne pathogen? Journal of Infections in Developing Countries, 11, 111–114. https://doi.org/10.3855/jidc.8418

Beltrão, J. C. C. (2019). Avaliação da qualidade microbiológica de saladas de hortaliças cruas prontas ao consumo e identificação do perfil de resistência a antibióticos das enterobactérias isoladas [Master’s dissertation, Universidade Federal Fluminense]. Repositório Institucional da UFF. https://app.uff.br/riuff/handle/1/12702?show=full

Cant, A., & Cole, T. (2010). Infections in the immunocompromised. In A. Finn, N. Curtis, & A. J. Pollard (Eds.), Hot Topics in Infection and Immunity in Children VI (Vol. 659, pp. 1–18). Springer. https://doi.org/10.1007/978-1-4419-0981-7_1

Carvalheira, A., Casquete, R., Silva, J., & Teixeira, P. (2017). Prevalence and antimicrobial susceptibility of Acinetobacter spp. isolated from meat. International Journal of Food Microbiology, 243, 58–63. https://doi.org/10.1016/j.ijfoodmicro.2016.12.001

Carvalheira, A., Silva, J., & Teixeira, P. (2017). Lettuce and fruits as a source of multidrug resistant Acinetobacter spp. Food Microbiology, 64, 119–125. https://doi.org/10.1016/j.fm.2016.12.005

Dropulic, L. K., & Lederman, H. M. (2016). Overview of infections in the immunocompromised host. In R. T. Hayden, D. M. Wolk, K. C. Carroll, & Y.-W. Tang (Eds.), Diagnostic Microbiology of the Immunocompromised Host (2nd ed., pp. 1–50). American Society for Microbiology. https://doi.org/10.1128/9781555819040.ch1

Joffre, E., Nicklasson, M., Álvarez-Carretero, S., Xiao, X., Sun, L., Nookaew, I., Zhu, B., & Sjöling, Å. (2019). The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Scientific Reports, 9, Article 108. https://doi.org/10.1038/s41598-018-36414-z

Madureira, A. R., Pereira, C. I., Truszkowska, K., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2005). Survival of probiotic bacteria in a whey cheese vector submitted to environmental conditions prevailing in the gastrointestinal tract. International Dairy Journal, 15(6–9), 921–927. https://doi.org/10.1016/j.idairyj.2004.08.025

Malta, R. C. R., Cruz, C. H. S., Santos, J. B., Ramos, G. L. P. A., & Nascimento, J. S. (2021). Acinetobacter em alimentos: Uma visão geral (1st ed.). Atena Editora.

Malta, R. C. R., Ramos, G. L. P. A., Nascimento, J. S. (2020). From food to hospital: we need to talk about Acinetobacter spp. Germs, 10(4), 210–217. https://doi.org/10.18683/germs.2020.1207

Mao, Y., Doyle, M. P., & Chen, J. (2006). Role of colanic acid exopolysaccharide in the survival of enterohaemorrhagic Escherichia coli O157:H7 in simulated gastrointestinal fluids. Letters in Applied Microbiology, 42(6), 642–647. https://doi.org/10.1111/j.1472-765X.2006.01875.x

Marí-Almirall, M., Cosgaya, C., Pons, M. J., Nemec, A., Ochoa, T. J., Ruiz, J., Roca, I., & Vila, J. (2019). Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru. International Journal of Food Microbiology, 305, Article 108248. https://doi.org/10.1016/j.ijfoodmicro.2019.108248

Mathipa, M. G., & Thantsha, M. S. (2015). Cocktails of probiotics pre-adapted to multiple stress factors are more robust under simulated gastrointestinal conditions than their parental counterparts and exhibit enhanced antagonistic capabilities against Escherichia coli and Staphylococcus aureus. Gut Pathogens, 7, Article 5. http://doi.org/10.1186/s13099-015-0053-5

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Feuteun, S. L., Lesmes, U., Macierzanka, A., Mackie, A., … Brodkorb, A. (2014). A Standardised static in vitro digestion method suitable for food – an international consensus. Food and Function, 5, 1113–1124. https://doi.org/10.1039/c3fo60702j

Pettersen, K. S., Skjerdal, T., Wasteson, Y., Lindbäck, T., Vegarud, G., Comi, I., & Aspholm, M. (2019). Survival of Listeria monocytogenes during in vitro gastrointestinal digestion after exposure to 5 and 0.5 % sodium chloride. Food Microbiology, 77, 78–84. https://doi.org/10.1016/j.fm.2018.08.010

Pienaar, J. A., Singh, A., & Barnard, T. G. (2016). Exploratory study into the culturability and viability of three strains of Escherichia coli after exposure to simulated gastric fluid of sub-lethal pHs. Medical Technology SA, 30(1), 36–44. https://hdl.handle.net/10520/EJC193810

Ramos, G. L. P. A., & Nascimento, J. S. (2019). Characterization of Acinetobacter spp. from raw goat milk. Ciência Rural, 49(10), Article e20190404. https://doi.org/10.1590/0103-8478cr20190404

Regalado, N. G., Martin, G., & Antony, S. J. (2009). Acinetobacter lwoffii: Bacteremia associated with acute gastroenteritis. Travel Medicine and Infectious Diseases, 7(5), 316–317. https://doi.org/10.1016/j.tmaid.2009.06.001

Singh, A., & Barnard, T. G. (2016). Surviving the acid barrier: responses of pathogenic Vibrio cholerae to simulated gastric fluid. Applied Microbiology and Biotechnology, 100, 815–824. https://doi.org/10.1007/s00253-015-7067-2

Singh, A., & Barnard, T. G. (2017). Adaptations in the physiological heterogeneity and viability of Shigella dysenteriae, Shigella flexneri and Salmonella typhimurium, after exposure to simulated gastric acid fluid. Microbial Pathogenesis, 113, 378–384. https://doi.org/10.1016/j.micpath.2017.11.014

Thom, K. A., Hsiao, W. W. L., Harris, A. D., Stine, O. C., Rasko, D. A., & Johnson, J. K. (2010). Patients with Acinetobacter baumannii bloodstream infections are colonized in the gastrointestinal tract with identical strains. American Journal of Infection Control, 38(9), 751–753. https://doi.org/10.1016/j.ajic.2010.03.005

Yakut, N., Kepenekli, E. K., Karaaslan, A., Atici, S., Akkoc, G., Demir, S. O., Soysal, A., & Bakir, M. (2016). Bacteremia due to Acinetobacter ursingii in infants: reports of two cases. The Pan African Medical Journal, 23, Article 193. https://doi.org/10.11604/pamj.2016.23.193.8545

Zhang, X. H., Wang, Z., Yin, B., Wu, H., Tang, S., Wu, L., Su, Y. N., Lin, Y., Liu, X. Q., Pang, B., Kemper, N., Hartung, J., & Bao, E. D. (2016). A complex of trypsin and chymotrypsin effectively inhibited growth of pathogenic bacteria inducing cow mastitis and showed synergistic antibacterial activity with antibiotics. Livestock Science, 188, 25–36. https://doi.org/10.1016/j.livsci.2016.03.017

Downloads

Publicado

2025-07-24

Como Citar

Monteiro, R. C., Nascimento, M. S. G. do, & Nascimento, J. dos S. (2025). Survival of Acinetobacter spp. isolated from food to simulated gastrointestinal conditions. Food Science and Technology, 45. https://doi.org/10.5327/fst.497

Edição

Seção

Artigos Originais