Sustainable starch-based films with added babassu oil: production and technological characterization
DOI:
https://doi.org/10.5327/fst.00394Palavras-chave:
biodegradable packaging biomaterial, Orbignya phalerata, starch, sorbitol plasticizer, biopolymeric matrix, bio-based compositeResumo
This study aimed to produce and characterize the technological properties of biodegradable films made from cassava starch incorporated with babassu oil and sorbitol as a plasticizer. The films were prepared using the casting technique and a 4×5 factorial experimental design, with the plasticizer and oil concentrations as independent variables. The films were characterized for thickness, solubility in water, saline solution, and acidic solution, water vapor permeability, thermal analysis, mechanical properties, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and biodegradability. The biodegradable films exhibited good mechanical properties (maximum tensile strength: 4.78 ± 2.75 MPa and percentage elongation: 183.13 ± 75.25%) and satisfactory barrier properties, indicating their potential for use as environmentally sustainable packaging. Thermal analyses revealed the presence of three stages of weight loss common to all films, while diffractograms revealed crystalline zones at 19.3 and 30º. The polysaccharide nature of the films was confirmed by FTIR spectra. The films demonstrated significant solubility, with values ranging from 85.53 ± 22.79% to 99.72 ± 8.69%, and rapid biodegradation, suggesting a viable substitute for non-biodegradable polymers, thereby mitigating improper disposal of such materials into the environment. The films incorporated with babassu oil and sorbitol showed good water vapor barrier properties and adequate mechanical resistance, especially when sorbitol was used as a plasticizer.
Downloads
Referências
Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788
Al-Hassan, A. A., & Norziah, M. H. (2012). Starch–gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids, 26(1), 108-117. https://doi.org/10.1016/j.foodhyd.2011.04.015
Association of Official Analytical Chemists (AOAC) (2006). Official Methods of analysis. Association of Official Analytical Chemists.
ASTM International (2012). ASTM-D882. ASTM International.
Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal, 20, 1-9. https://doi.org/10.1016/j.nfs.2020.06.002
Barizao, C. L., Crepaldi, M. I., S. Junior, O. O., Oliveria, A. C., Martins, A. F., Garcia, P. S., & Bonafé, E. G. (2020). Biodegradable films based on commercial κ-carrageenan and cassava starch to achieve low production costs. International Journal of Biological Macromolecules, 165(Part A), 582-590. https://doi.org/10.1016/j.ijbiomac.2020.09.150
Bauer, L. C., Santos, L. S., Sampaio, K. A., Ferrao, S. P. B., Fontan, R. C. I., Minim, L. A., Veloso, C. M., & Bonomo, R. C. F. (2020). Physicochemical and thermal characterization of babassu oils (Orbignya phalerata Mart.) obtained by different extraction methods. Food Research International, 137, 109474. https://doi.org/10.1016/j.foodres.2020.109474
Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. https://doi.org/10.1139/o59-099
Bonomo, R. C. F., Santos, T. A., Santos, L. S., da Costa Ilhéu Fontan, R., Rodrigues, L. B., dos Santos Pires, A. C., Veloso, C. M., Gandolfi, O. R. R., & Bonomo, P. (2018). Effect of the Incorporation of Lysozyme on the Properties of Jackfruit Starch Films. Journal of Polymers and the Environment, 26(2), 508-517. https://doi.org/10.1007/s10924-016-0902-4
Caetano, K. S., Lopes, N. A., Costa, T. M. H., Brandelli, A., Rodrigues, E., Flores, S. H., & Cladera-Oliveria, F. (2018). Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packaging and Shelf Life, 16, 138-147. https://doi.org/10.1016/j.fpsl.2018.03.006
Chandra, R., & Rustgi, R. (1997). Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability, 56(2), 185-202. https://doi.org/10.1016/S0141-3910(96)00212-1
Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2019). Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packaging and Shelf Life, 22, 100423. https://doi.org/10.1016/j.fpsl.2019.100423
Costa, J. C. M., Miki, K. S. L., Ramos, A. S., & Teixeira-Costa, B. E. (2020). Development of biodegradable films based on purple yam starch_chitosan for food application. Heliyon, 6(4), e03718. https://doi.org/10.1016/j.heliyon.2020.e03718
Costa, R. D. S., Hickmann Flôres, S., Brandelli, A., Galarza Vargas, C., Carolina Ritter, A., Manoel da Cruz Rodrigues, A., & Helena Meller da Silva, L. (2023). Development and properties of biodegradable film from peach palm (Bactris gasipaes). Food Research International, 173, 113172. https://doi.org/10.1016/j.foodres.2023.113172
Dankar, I., Haddarah, A., Omar, F. E. L., Pujolà, M., & Sepulcre, F. (2018). Characterization of food additive-potato starch complexes by FTIR and X-ray diffraction. Food Chemistry, 260, 7-12. https://doi.org/10.1016/j.foodchem.2018.03.138
de Oliveira, R. A. D., da Conceição Neves, S., Ribeiro, L. M., Nascimento Lopes, P. S., & Silvério, F. O. (2016). Storage, oil quality and cryopreservation of babassu palm seeds. Industrial Crops and Products, 91, 332-339. https://doi.org/10.1016/j.indcrop.2016.07.039
dos Santos, A. M., Mitja, D., Delaître, E., Demagistri, L., de Souza Miranda, I., Libourel, T., & Petit, M. (2017). Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images. Journal of Environmental Management, 193, 40-51. https://doi.org/10.1016/j.jenvman.2017.02.004
do Val Siqueira, L., Arias, C. I. L. F., Maniglia, B. C., & Tadini, C. C. (2021). Starch-based biodegradable plastics: methods of production, challenges and future perspectives. Current Opinion in Food Science, 38, 122-130. https://doi.org/10.1016/j.cofs.2020.10.020
Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Effect of various plasticizers and concentration on the physical, thermal, mechanical, and structural properties of cassava-starch-based films. Starch - Stärke, 69(1-2), 1500366. https://doi.org/10.1002/star.201500366
Farahnaky, A., Saberi, B., & Majzoobi, M. (2013). Effect of Glycerol on Physical and Mechanical Properties of Wheat Starch Edible Films. Journal of Texture Studies, 44(3), 176-186. https://doi.org/10.1111/jtxs.12007
Ferreira, P. S., Freitas, S. P., & Almeida, E. L. (2023). Scientific and technological advancements in the utilisation of by‐products from babassu oil extraction: a bibliometric review. International Journal of Food Science & Technology, 58(10), 4980-4991. https://doi.org/10.1111/ijfs.16650
Galus, S., & Kadzinska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273-283. https://doi.org/10.1016/j.tifs.2015.07.011
Garcia-Salcedo, A. J., Torres-Vargas, O. L., Real, A. D., Contreras-Jimenez, B., & Rodriguez-Garcia, M. E. (2018). Pasting, viscoelastic, and physicochemical properties of chia (Salvia hispanica L.) flour and mucilage. Food Structure, 16, 59-66. https://doi.org/10.1016/j.foostr.2018.03.004
Ghasemlou, M., Aliheidari, N., Fahmi, R., Shojaee-Aliabadi, S., Keshavarz, B., Cran, M. J., & Khaksar, R. (2013). Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers, 98(1), 1117-1126. https://doi.org/10.1016/j.carbpol.2013.07.026
Gontard, N., Guilbert, S., & Cuq, J.-L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of Food Science, 57(1), 190-195. https://doi.org/10.1111/j.1365-2621.1992.tb05453.x
Hadi, A., Nawab, A., Alam, F., & Zehra, K. (2021). Physical, mechanical, optical, barrier, and antioxidant properties of sodium alginate–aloe vera biocomposite film. Journal of Food Processing and Preservation, 45(5), e15444. https://doi.org/10.1111/jfpp.15444
Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2010). Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology, 91(7), 759-764. https://doi.org/10.1016/j.fuproc.2010.02.009
Hiura, A. L., & Rocha, A. E. S. (2018). Flora of the canga of Serra dos Carajás, Pará, Brazil. Rodriguésia, 69(1), 41-48. https://doi.org/10.1590/2175-7860201869104
Hong, J., Zeng, X. A., Brennan, C. S., Brennan, M., & Han, Z. (2016). Recent advances in techniques for starch esters and the applications: A review. Foods, 5(3), 50. https://doi.org/10.3390/foods5030050
Huang, J., Hu, Z., Hu, L., Li, G., Yao, Q., & Hu, Y. (2021). Pectin-based active packaging: A critical review on preparation, physical properties and novel application in food preservation. Trends in Food Science e Techonology, 118(Part A), 167-178. https://doi.org/10.1016/j.tifs.2021.09.026
Jafarzadeh, S., & Jafari, S. M. (2021). Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials. Critical Reviews in Food Science and Nutrition, 61(16), 2640-2658. https://doi.org/10.1080/10408398.2020.1783200
Jaramillo, C. M., González Seligra, P., Goyanes, S., Bernal, C., & Famá, L. (2015). Biofilms based on cassava starch containing extract of yerba mate as antioxidant and plasticizer. Starch/Staerke, 67(9-10), 780-789. https://doi.org/10.1002/star.201500033
Jasem odhaib, A., Pirsa, S., & Mohtarami, F. (2024). Biodegradable film based on barley sprout powder/pectin modified with quercetin and V2O5 nanoparticles: Investigation of physicochemical and structural properties. Heliyon, 10(3), e25448. https://doi.org/10.1016/j.heliyon.2024.e25448
Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., Li, S., Luo, Q., Li, M., Liu, X., Chen, A., Wang, Z., & Zhang, Z. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143, 359-372. https://doi.org/10.1016/j.ijbiomac.2019.12.024
Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: a review. Food and Bioprocess Technology, 5, 2058-2076. https://doi.org/10.1007/s11947-012-0835-4
Kizil, R., Irudayaraj, J., & Seetharaman, K. (2002). Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 50(14), 3912-3918. https://doi.org/10.1021/jf011652p
Kuprianov, V. I., & Arromdee, P. (2013). Combustion of peanut and tamarind shells in a conical fluidized-bed combustor: A comparative study. Bioresource Technology, 140, 199-210. https://doi.org/10.1016/j.biortech.2013.04.086
La Fuente, C. I. A., Souza, A. T., Tadini, C. C., & Augusto, P. E. D. (2019). Ozonation of cassava starch to produce biodegradable films. International Journal of Biological Macromolecules, 141, 713-720. https://doi.org/10.1016/j.ijbiomac.2019.09.028
Lim, W. S., Ock, S. Y., Park, G. D., Lee, I. W., Lee, M. H., & Park, H. J. (2020). Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packaging and Shelf Life, 26, 100556. https://doi.org/10.1016/j.fpsl.2020.100556
Liu, Q., Donner, E., Tarn, R., Singh, J., & Chung, H.-J. (2009). Advanced Analytical Techniques to Evaluate the Quality of Potato and Potato Starch. In Advances in Potato Chemistry and Technology (pp. 221-248). Elsevier. https://doi.org/10.1016/B978-0-12-374349-7.00008-8
Maniglia, B. C., Tessaro, L., Lucas, A. A., & Tapia-Blácido, D. R. (2017). Bioactive films based on babassu mesocarp flour and starch. Food Hydrocolloids, 70, 383-391. https://doi.org/10.1016/j.foodhyd.2017.04.022
Mannai, F., Mechi, L., Alimi, F., Alsukaibi, A. K. D., Belgacem, M. N., & Moussaoui, Y. (2023). Biodegradable composite films based on mucilage from Opuntia ficus-indica (Cactaceae): Microstructural, functional and thermal properties. International Journal of Biological Macromolecules, 252, 126456. https://doi.org/10.1016/j.ijbiomac.2023.126456
Martinez, C., & Cuevas, F. (1989). Evaluación de la calidad culinaria y molinera del arroz. In Guia de estudo (p. 75). CIAT.
Medina‐Jaramillo, C., Bernal, C., & Famá, L. (2020). Influence of Green Tea and Basil Extracts on Cassava Starch Based Films as Assessed by Thermal Degradation, Crystalline Structure, and Mechanical Properties. Starch - Stärke, 72(3-4), 1900155. https://doi.org/10.1002/star.201900155
Mendez, P. A., Mendez, A. M., Martinez, N. L., Vargas, B., & Lopez, B. L. (2022). Cassava and banana starch modified with maleic anhydride-poly (ethylene glycol) methyl ether (Ma-mPEG): A comparative study of their physicochemical properties as coatings. International Journal of Biological Macromolecules, 205, 1-14. https://doi.org/10.1016/j.ijbiomac.2022.02.053
Moraes, O. M. G., & Chaves, M. B. (1988). Spectrophotometric method for the determination of starch in meat products. In National meeting of food analysts (p. 281).
Nascimento, P., Marim, R., Carvalho, G., & Mali, S. (2016). Nanocellulose produced from rice hulls and its effect on the properties of biodegradable starch films. Materials Research, 19(1), 167-174. https://doi.org/10.1590/1980-5373-MR-2015-0423
Nevoralova, M., Koutný, M., Ujcic, A., Horák, P., Kredatusová, J., Será, J., Ruzek, L., Ruzková, M., Krejciková, S., Slouf., M., & Krulis, Z. (2019). Controlled biodegradability of functionalized thermoplastic starch based materials. Polymer Degradation and Stability, 170, 108995. https://doi.org/10.1016/j.polymdegradstab.2019.108995
Onyeaka, H., Obileke, K., Makaka, G., & Nwokolo, N. (2022). Current Research and Applications of Starch-Based Biodegradable Films for Food Packaging. Polymers, 14(6), 1126. https://doi.org/10.3390/polym14061126
Orsuwan, A., & Sothornvit, R. (2018). Effect of banana and plasticizer types on mechanical, water barrier, and heat sealability of plasticized banana-based films. Journal of Food Processing and Preservation, 42(1), e13380. https://doi.org/10.1111/jfpp.13380
Pelissari, F. M., Ferreira, D. C., Louzada, L. B., dos Santos, F., Corrêa, A. C., Moreira, F. K. V., & Mattoso, L. H. (2019). Starch-based edible films and coatings. In Starches for Food Application (pp. 359-420). Elsevier. https://doi.org/10.1016/B978-0-12-809440-2.00010-1
Perazzo, K. K. N. C. L., Conceição, A. C. de V., Santos, J. C. P. dos, Assis, D. de J., Souza, C. O., & Druzian, J. I. (2014). Properties and antioxidant action of actives cassava starch films incorporated with green tea and palm oil extracts. PLoS One, 9(9), e105199. https://doi.org/10.1371/journal.pone.0105199
Pereira, S. N. G., Sales de Lima, A. B., Oliveira, T. F., Batista, A. S., Jesus, J. C., Ferrao, S. P. B., & Santos, L. S. (2022). Non-destructive detection of soybean oil addition in babassu oil by MIR spectroscopy and chemometrics. LWT Food Science and Techology, 154, 112857. https://doi.org/10.1016/j.lwt.2021.112857
Rahaman, A., Kumari, A., Zeng, X., Farroq, M. A., Siddique, R., Khalifa, I., Siddeeg, A., Ali, M., & Manzoor, M. F. (2021). Ultrasound based modification and structural-functional analysis of corn and cassava starch. Ultrasonics Sonochemistry, 80, 105795. https://doi.org/10.1016/j.ultsonch.2021.105795
Rangaraj, V. M., Rambabu, K., & Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience, 43, 101251. https://doi.org/10.1016/j.fbio.2021.101251
Rincon, E., Espinosa, E., Garcia-Dominguez, M. T., Balu, A. M., Vilaplana, F., Serrano, L., & Jimenez-Quero, A. (2021). Bioactive pectic polysaccharides from bay tree pruning waste_ Sequential subcritical water extraction and application in active food packaging. Carbohydrate Polymers, 272, 118477. https://doi.org/10.1016/j.carbpol.2021.118477
Rindlav-Westling, A., Stading, M., Hermansson, A.-M., & Gatenholm, P. (1998). Structure, mechanical and barrier properties of amylose and amylopectin films. Carbohydrate Polymers, 36(2-3), 217-224. https://doi.org/10.1016/S0144-8617(98)00025-3
Rolland-Sabaté, A., Sanchez, T., Buleon, A., Colonna, P., Jaillais, B., Ceballos, H., & Dufour, D. (2012). Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocolloids, 27(1), 161-174. https://doi.org/10.1016/j.foodhyd.2011.07.008
Saberi, B., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J., & Stathopoulos, C. E. (2017). Physical and mechanical properties of a new edible film made of pea starch and guar gum as affected by glycols, sugars and polyols. International Journal of Biological Macromolecules, 104(Part A), 345-359. https://doi.org/10.1016/j.ijbiomac.2017.06.051
Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2015). Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 119, 126-133. https://doi.org/10.1016/j.carbpol.2014.11.038
Santana, R. F., Bonomo, R. C. F., Gandolfi, O. R. R., Rodrigues, L. B., Santos, L. S., dos Santos Pires, A. C., Oliveira, C. P., Fontan, R. C. I., & Veloso, C. M. (2018). Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol. Journal of Food Science and Technology, 55(1), 278-286. https://doi.org/10.1007/s13197-017-2936-6
Seligra, P. G., Jaramillo, C. M., Famá, L., & Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch-gycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66-74. https://doi.org/10.1016/j.carbpol.2015.11.041
Shen, Z., & Kamdem, D. P. (2015). Development and characterization of biodegradable chitosan films containing two essential oils. International Journal of Biological Macromolecules, 74, 289-296. https://doi.org/10.1016/j.ijbiomac.2014.11.046
Sikora, J. W., Majewski, Ł., & Puszka, A. (2021). Modern biodegradable plastics—processing and properties part II. Materials, 14(10), 2523. https://doi.org/10.3390/ma14102523
Silva, G. M. S., Veloso, C. M., Santos, L. S., Melo Neto, B. A. de, Fontan, R. da C. I., & Bonomo, R. C. F. (2020). Extraction and characterization of native starch obtained from the inhambu tuber. Journal of Food Science and Technology, 57(5), 1830-1839. https://doi.org/10.1007/s13197-019-04216-4
Silva, M. J. F., Rodrigues, A. M., Vieira, I. R. S., Neves, G. de A., Menezes, R. R., Gonçalves, E. da G. do R., & Pires, M. C. C. (2020). Development and characterization of a babassu nut oil-based moisturizing cosmetic emulsion with a high sun protection factor. RSC Advances, 10(44), 26268-26276. https://doi.org/10.1039/D0RA00647E
Tabassum, N., Rafique, U., Qayyum, M., Mohammed, A. A. A., Asif, S., & Bokhari, A. (2024). Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization. Journal of Composites Science, 8(1), 29. https://doi.org/10.3390/jcs8010029
Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2018). Effect of starch physiology, gelatinization, and retrogradation on the attributes of rice starch‐ι‐carrageenan film. Starch - Stärke, 70(1-2), 1700099. https://doi.org/10.1002/star.201700099
Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190
Vianna, T. C., Marinho, C. O., Marangoni Júnior, L., Ibrahim, S. A., & Vieira, R. P. (2021). Essential oils as additives in active starch-based food packaging films: A review. International Journal of Biological Macromolecules, 182, 1803-1819. https://doi.org/10.1016/j.ijbiomac.2021.05.170
Wang, K., Gao, S., Shen, C., Liu, J., Li, S., Chen, J., & Ren, X. (2018). Preparation of cationic Konjac glucomannan in NaOH urea aqueous solution. Carbohydrate Polymers, 181, 736-743. https://doi.org/10.1016/j.carbpol.2017.11.084
Wang, Y., Luo, J., Wu, H., Li, Q., Li, S., Luo, Q., Li, M., Liu, X., Shen, G., Cheng, A., & Zhang, Z. (2022). Physicochemical, antibacterial, and biodegradability properties of green Sichuan pepper (Zanthoxylum armatum DC.) essential oil incorporated starch films. LWT - Food Science and Technology, 161, 113392. https://doi.org/10.1016/j.lwt.2022.113392
Wu, Y., Chen, Z., Li, X., & Li, M. (2009). Effect of tea polyphenols on the retrogradation of rice starch. Food Research International, 42(2), 221-225. https://doi.org/10.1016/j.foodres.2008.11.001
Zhang, P., Zhao, Y., & Shi, Q. (2016). Characterization of a novel edible film based on gum ghatti: effect of plasticizer type and concentration. Carbohydrate Polymers, 153, 345-355. https://doi.org/10.1016/j.carbpol.2016.07.082
Zhang, Y., Simpson, K., & Dumont, M. J. (2018). Effect of beeswax and carnauba wax addition on properties of gelatin films: A comparative study. Food Bioscience, 26, 88-95. https://doi.org/10.1016/j.fbio.2018.09.011
Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. https://doi.org/10.1016/j.aiepr.2019.11.002