Microbiological contamination and mycotoxin detection in guarana integument: addressing safety concerns in guarana agro-industrial co-products
DOI:
https://doi.org/10.5327/fst.500Keywords:
Paullinia cupana, seed coat, co-product, microbiological characterization, mycotoxinsAbstract
This study characterized the microbiota of guarana integument, a co-product of guarana production chain, and validated an ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) method for mycotoxin detection. Despite its low water activity, guarana integument harbors diverse microorganisms, including pathogens (Bacillus cereus), enteric opportunists (Enterococcus casseliflavus, Citrobacter freundii, Kosakonia radicincitans, Enterobacter cloacae, and Enterobacter bugandensis), and spoilage organisms (molds, yeasts, and spore-forming bacteria). Mold and yeast counts above the quantification limit were found only in samples from Producers 1 and 3 (3.00 and 4.35 log₁₀ colony-forming unit [CFU]/g, respectively). Aerobic mesophilic bacteria were present in all samples (2.65–4.27 log₁₀ CFU/g), while Enterobacteriaceae contamination was detected only in Producer 3 (1.77 log₁₀ CFU/g). B. cereus vegetative cells were found in Producers 1 and 3 (2.85 and 2.30 log₁₀ CFU/g), raising safety concerns. No Salmonella sp. or Listeria monocytogenes were detected. Aerobic mesophilic spore-forming bacteria were present in all samples, with Producer 3 showing the highest count (> 6 log₁₀ spores/g) and being the only thermophilic spores above the limit (2.17 log₁₀ spores/g). Aflatoxins B1 and B2, and ochratoxin A were below detection limits. These findings highlight potential risks to casquilho’s microbiological stability.
Downloads
References
Akbar, A., Medina, A., & Magan, N. (2016). Efficacy of different caffeine concentrations on growth and ochratoxin A production by Aspergillus species. Letters in Applied Microbiology, 63(1), 25–29. https://doi.org/10.1111/lam.12586
AOAC (2002). AOAC official method 991.31. Aflatoxins in corn, raw peanuts, and peanut butter. AOAC.
Chen, A. J., Jiao, X., Hu, Y., Lu, X., & Gao, W. (2015). Mycobiota and mycotoxins in traditional medicinal seeds from China. Toxins, 7(10), 3858–3875. https://doi.org/10.3390/toxins7103858
Companhia Nacional de Abastecimento (CONAB). (2022). Análise mensal guaraná outubro de 2022. CONAB. https://www.gov.br/conab/pt-br
Copetti, M. V., Iamanaka, B. T., Nester, M. A., Efraim, P., & Taniwaki, M. H. (2013). Occurrence of ochratoxin A in cocoa by-products and determination of its reduction during chocolate manufacture. Food Chemistry, 136(1), 100–104. https://doi.org/10.1016/j.foodchem.2012.07.093
Costa, J., Santos, C., Soares, C., Rodríguez, R., Lima, N., & Santos, C. (2022). Occurrence of aflatoxins and ochratoxin A during merkén pepper powder production in Chile. Foods, 11(23), Article 3843. https://doi.org/10.3390/foods11233843
Coutinho, T. A., Maayer, P. de, Jordan, S., & Smits, T. H. (2024). Enterobacter. In Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1–21).
den Besten, H. M., Mataragas, M., Moezelaar, R., Abee, T., & Zwietering, M. H. (2006). Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579. Applied and Environmental Microbiology, 72(9), 5884–5894. https://doi.org/10.1128/AEM.00780-06
Desai, S. V., & Varadaraj, M. C. (2010). Behavioural pattern of vegetative cells and spores of Bacillus cereus as affected by time-temperature combinations used in processing of Indian traditional foods. Journal of Food Science and Technology, 47(5), 549–556. https://doi.org/10.1007/s13197-010-0099-9
Erickson, H. T., Corrêa, M. P. F., & Escobar, J. R. (1984). Guaraná (Paullinia cupana) as a commercial crop in Brazilian Amazonia. Economic Botany, 38, 273–286. https://doi.org/10.1007/BF02859006
European Commission (EC) (2021). SANTE/11312/2021: Analytical quality control and method validation procedures for pesticide residue analysis in food and feed. Publications Office of the European Union.
Faour-Klingbeil, D., Murtada, M., Kuri, V., & Todd, E. C. (2016). Understanding the routes of contamination of ready-to-eat vegetables in the Middle East. Food Control, 62, 125–133. https://doi.org/10.1016/j.foodcont.2015.10.024
Hathcock, T., Raiford, D., Conley, A., Barua, S., Murillo, D. F. B., Prarat, M., Kaur, P., Scaria, J., & Wang, C. (2023). Antimicrobial-Resistant Escherichia coli, Enterobacter cloacae, Enterococcus faecium, and Salmonella Kentucky Harboring Aminoglycoside and Beta-Lactam Resistance Genes in Raw Meat-Based Dog Diets, USA. Foodborne Pathogens and Disease, 20(11), 477–483. https://doi.org/10.1089/fpd.2023.0043
Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) (2020). Orientação sobre validação de métodos analíticos. DOQ-CGCRE-008. Revisão 09. Inmetro.
International Organization for Standardization (ISO) (2004). ISO 7932:2004. Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of presumptive Bacillus cereus — Colony-count technique at 30 degrees C. ISO.
International Organization for Standardization (ISO) (2017a). ISO 6579-1: 2017. Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella. 1 Ed. Part 1: Detection of Salmonella spp. ISO.
International Organization for Standardization (ISO) (2017b). ISO 11290-1:2017. Microbiology of the food chain — Horizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection method. ISO.
Kornacki, J. L., Gurtler, J. B., & Stawick, B. A. (2014). Enterobacteriaceae, Coliforms, and Escherichia coli as quality and safety indicators. In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 103-120). American Public Health Association.
Kumar, S., Rani, A., Yadav, M., Sehrawat, N., Singh, M., & Sharma, A. (2024). Detection of antimicrobial resistant bacterial pathogens in the raw chicken meat samples in North India. Vegetos, 1–8. https://doi.org/10.1007/s42535-024-01155-0
Lima, C. M. G., Costa, H. R. D., Pagnossa, J. P., Rollemberg, N. D. C., Silva, J. F. D., Dalla Nora, F. M., Batiha, G. E., & Verruck, S. (2021). Influence of grains postharvest conditions on mycotoxins occurrence in milk and dairy products. Food Science and Technology, 42, e16421. https://doi.org/10.1590/fst.16421
Logan, N. A., & Vos, P. (2015). Bacillus. In Bergey’s Manual of Systematics of Archaea and Bacteria (pp. 1-163).
Majhenič, L., Škerget, M., & Knez, Ž. (2007). Antioxidant and antimicrobial activity of guarana seed extracts. Food Chemistry, 104(3), 1258–1268. https://doi.org/10.1016/j.foodchem.2007.01.074
Martins, M., Kluczkovski, A. M., Santos, A. D., Fernandes, O. C., & Scussel, V. M. (2014a). Evaluation of ochratoxin A and fungi in powdered guarana (Paullinia cupana Kunth), a caffeine rich product from Amazon forest. African Journal of Microbiology Research, 8(6), 545–550. https://doi.org/10.5897/AJMR2013.6579
Martins, M., Kluczkovski, A. M., Souza, T. P., Savi, C. P. G. D., & Scussel, V. M. (2014b). Inhibition of growth and aflatoxin production of Aspergillus parasiticus by guaraná (Paullinia cupana Kunth) and jucá (Libidibia ferrea Mart) extracts. African Journal of Biotechnology, 13(1), 131–137. https://doi.org/10.5897/AJB2013.13444
Murray, K., Wu, F., Shi, J., Jun Xue, S., & Warriner, K. (2017). Challenges in the microbiological food safety of fresh produce: Limitations of post-harvest washing and the need for alternative interventions. Food Quality and Safety, 1(4), 289–301. https://doi.org/10.1093/fqsafe/fyx027
Oga, S., Camargo, M. M. A., & Batistuzzo, J. A. O. (2014). Fundamentos de Toxicologia (4th ed.). Atheneu.
Olson, K. E., & Sorrells, K. M. (2014). Thermophilic aerobic flat sour sporeformers. In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 329–33). American Public Health Association.
Pitt, J. I., & Hocking, A. D. (2009). Fungi and food spoilage (Vol. 519). Springer.
Rasines, L., San Miguel, G., Molina-García, Á., Artés-Hernández, F., Hontoria, E., & Aguayo, E. (2023). Optimizing the environmental sustainability of alternative post-harvest scenarios for fresh vegetables: A case study in Spain. Science of the Total Environment, 860, Article 160422. https://doi.org/10.1016/j.scitotenv.2022.160422
Ryser, E. T., & Schuman, J. D. (2014). Mesophilic aerobic plate count. In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 95–101). American Public Health Association.
Ryu, D., & Wolf-Hall, C. (2015). Yeasts and molds. In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of Methods for the Microbiological Examination of Foods (5th Ed., pp. 277–86). American Public Health Association.
Samapundo, S., Heyndrickx, M., Xhaferi, R., de Baenst, I., & Devlieghere, F. (2014). The combined effect of pasteurization intensity, water activity, pH and incubation temperature on the survival and outgrowth of spores of Bacillus cereus and Bacillus pumilus in artificial media and food products. International Journal of Food Microbiology, 181, 10–18. https://doi.org/10.1016/j.ijfoodmicro.2014.04.018
Schimpl, F. C., da Silva, J. F., de Carvalho Gonçalves, J. F., & Mazzafera, P. (2013). Guarana: revisiting a highly caffeinated plant from the Amazon. Journal of Ethnopharmacology, 150(1), 14–31. https://doi.org/10.1016/j.jep.2013.08.023
Shen, M. H., & Singh, R. K. (2022). Determining aflatoxins in raw peanuts using immunoaffinity column as sample clean-up method followed by normal-phase HPLC-FLD analysis. Food Control, 139, Article 109065. https://doi.org/10.1016/j.foodcont.2022.109065
Silva, D., Nunes, P., Melo, J., & Quintas, C. (2022). Microbial quality of edible seeds commercially available in southern Portugal. AIMS Microbiology, 8(1), 42–52. https://doi.org/10.3934/microbiol.2022004
Snyder, A. B., Martin, N., & Wiedmann, M. (2024). Microbial food spoilage: Impact, causative agents and control strategies. Nature Reviews Microbiology, 22(9), 528–542. https://doi.org/10.1038/s41579-024-01037-x
Sousa, T. M. A., Batista, L. R., Passamani, F. R. F., Lira, N. A., Cardoso, M. G., Santiago, W. D., & Chalfoun, S. M. (2018). Evaluation of the effects of temperature on processed coffee beans in the presence of fungi and ochratoxin A. Journal of Food Safety, 39(1), Article e12584. https://doi.org/10.1111/jfs.12584
Stevenson, K. E., & Lembke, F. (2014). Mesophilic aerobic endospore-forming bacilli. In Y. Salfinger & M. L. Tortorello (Eds.), Compendium of methods for the microbiological examination of foods (5th ed., pp. 299–304). American Public Health Association.
Wei, G., Zhang, B., Liang, Y., Zhang, Z., Liang, C., Wu, L., Yu, H., Zhang, Y., Chen, S., & Dong, L. (2023). Fungal microbiome related to mycotoxin contamination in medicinal and edible seed Semen Persicae. Heliyon, 9(9), Article e19796. https://doi.org/10.1016/j.heliyon.2023.e19796
Yoshino, Y. (2023). Enterococcus casseliflavus infection: a review of clinical features and treatment. Infection and Drug Resistance, 16, 363–368. https://doi.org/10.2147/idr.s398739
Zhang, M., Yin, Z., Chen, B., Yu, Z., Liang, J., Tian, X., Li, D., Deng, X., & Peng, L. (2024). Investigation of Citrobacter freundii clinical isolates in a Chinese hospital during 2020–2022 revealed genomic characterization of an extremely drug-resistant C. freundii ST257 clinical strain GMU8049 co-carrying bla NDM-1 and a novel bla CMY variant. Microbiology Spectrum, 12(11), Article e0425423. https://doi.org/10.1128/spectrum.04254-23