Comparative lipid analysis of colostrum and mature human milk using UHPLC-Q-TOF-MS

Autores

DOI:

https://doi.org/10.5327/fst.00463

Palavras-chave:

lipid profile, human milk, ultra-performance liquid chromatography, gas chromatography with flame ionization detector

Resumo

Human milk serves as a complete source of nutrients for newborns and is considered an essential food for child development. One of the key nutrients in milk is lipids, which are the primary energy source for infants. This work presents a comparative study of the lipid profiles of colostrum and mature human milk from Brazilian nursing mothers. The analysis utilized the techniques of gas chromatography with a flame ionization detector and ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. The predominant fatty acids found in both types of milk were palmitic acid, oleic acid, and linoleic acid. Furthermore, a lipidomic analysis based on the fatty acids profile identified 48 different lipids, which were classified as glycerophospholipids, glycolipids, and non-esterified fatty acids. When comparing the lipid profiles, colostrum was found to be more nutritious than mature milk in terms of lipid quality. Although the comparison of human milk through lipidomic analysis is not extensively explored in Brazil, this study demonstrated its effectiveness and has the potential to enhance our understanding of lipid absorption processes by the human body.

Downloads

Não há dados estatísticos.

Referências

Agência Nacional de Vigilância Sanitária. (2006). Resolução-RDC nº 171, de 4 de setembro de 2006. Dispõe sobre o Regulamento Técnico para o funcionamento de Bancos de Leite Humano. Diário Oficial da União. https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2006/res0171_04_09_2006.html

Bakhytkyzy, I., Hewelt-Belka, W., & Kot-Wasik, A. (2020). The dispersive micro-solid phase extraction method for MS-based lipidomics of human breast milk. Microchemical Journal, 152, Article 104269. https://doi.org/10.1016/j.microc.2019.104269

Bernard, J. Y., Armand, M., Garcia, C., Forhan, A., Agostini, M., Charles, M.-A., & Heude, B. (2015). The association between linoleic acid levels in colostrum and child cognition at 2 and 3 y in the EDEN cohort. Pediatric Research, 77(6), 829–835. https://doi.org/10.1038/pr.2015.50

Castro, M. C., Oliveira, F. S., Alves, E. S., Zacarias, J. M. V., Alencar, J. S., Silva, J. M., Visentainer, J. E. L., Santos, O. O., Visentainer, J. V., & Ichisato, S. M. T. (2023). Influence of Breastfeeding Time on Caloric Composition and IL-10 and TNF-α Cytokines, Fatty Acids, and Triacylglycerol in Human Milk Colostrum in Previous, Intermediate, and Posterior Milk. Journal of the Brazilian Chemical Society, 34(2), 201–212. https://doi.org/10.21577/0103-5053.20220099

Demmelmair, H., & Koletzko, B. (2018). Lipids in human milk. Best Practice & Research Clinical Endocrinology & Metabolism, 32(1), 57–68. https://doi.org/10.1016/j.beem.2017.11.002

Duan, B., Shin, J.-A., Qin, Y., Kwon, J.-I., & Lee, K.-T. (2019). A study on the relationship of fat content in human milk on carotenoids content and fatty acid compositions in Korea. Nutrients, 11(9), Article 2072. https://doi.org/10.3390/nu11092072

Floris, L. M., Stahl, B., Abrahamse-Berkeveld, M., & Teller, I. C. (2020). Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins, Leukotrienes and Essential Fatty Acids, 156, Article 102023. https://doi.org/10.1016/j.plefa.2019.102023

Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1), 497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

Guxens, M., Mendez, M. A., Moltó-Puigmartí, C., Julvez, J., García-Esteban, R., Forns, J., Ferrer, M., Vrijheid, M., López-Sabater, M. C., & Sunyer, J. (2011). Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development. Pediatrics, 128(4), 880–889. https://doi.org/10.1542/peds.2010-1633

International Organization for Standardization. (1978). International Standard ISO 5509. Animal and vegetable fats and oils - Preparation of methyl esters of fatty acids. International Organization for Standardization.

Jensen, R. G. (1999). Lipids in human milk. Lipids, 34(12), 1243–1271. https://doi.org/10.1007/s11745-999-0477-2

Kumar, N., Bansal, A., Sarma, G. S., & Rawal, R. K. (2014). Chemometrics tools used in analytical chemistry: An overview. Talanta, 123, 186–199. https://doi.org/10.1016/j.talanta.2014.02.003

Lipid Maps. (2024). A free, open access lipidomics resource, s.d. Retrieved May 21, 2024, from https://www.lipidmaps.org/

Manin, L. P., Rydlewski, A. A., Galuch, M. B., Pizzo, J. S., Zappielo, C. D., Senes, C. E. R., Santos, O. O., & Visentainer, J. V. (2019). Evaluation of the lipid quality of lyophilized pasteurized human milk for six months by GC-FID and ESI-MS. Journal of the Brazilian Chemical Society, 30(8), 1579–1586. https://doi.org/10.21577/0103-5053.20190045

Manin, L. P., Rydlewski, A. A., Pizzo, J. S., Cruz, V. H. M., Alves, E. S., Santos, P. D. S., Mikcha, J. M. G., Cristianini, M., Santos, O. O., & Visentainer, J. V. (2023). Effects of pasteurization and high-pressure processing on the fatty acids, triacylglycerol profile, Dornic acidity, and macronutrients in mature human milk. Journal of Food Composition and Analysis, 115, Article 104918. https://doi.org/10.1016/j.jfca.2022.104918

Much, D., Brunner, S., Vollhardt, C., Schmid, D., Sedlmeier, E.-M., Brüderl, M., Heimberg, E., Bartke, N., Boehm, G., Bader, B. L., Amann-Gassner, U., & Hauner H. (2013). Breast milk fatty acid profile in relation to infant growth and body composition: results from the INFAT study. Pediatric Research, 74(2), 230–237. https://doi.org/10.1038/pr.2013.82

Silva, R. C., Escobedo, J. P., Gioielli, L. A., Quintal, V. S., Ibidi, S. M., & Albuquerque, E. M. (2007). Centesimal composition of human milk and physico-chemical properties of its fat. Química Nova, 30(7), 1535–1538. https://doi.org/10.1590/S0100-40422007000700007

Song, S., Liu, T.-T., Liang, X., Liu Z.-Y, Yishake, D., Lu, X.-T., Yang, M.-T., Man, Q.-Q., Zhang, J., & Zhu, H.-L. (2021). Profiling of phospholipid molecular species in human breast milk of Chinese mothers and comprehensive analysis of phospholipidomic characteristics at different lactation stages. Food Chemistry, 348, Article 129091. https://doi.org/10.1016/j.foodchem.2021.129091

Visentainer, J. V., Santos, O. O., Maldaner, L., Zappielo, C., Neia, V., Visentainer, L., Pelissari, L., Pizzo, J., Rydlewski, A., Silveira, R., Galuch, M., & Visentainer, J. L. (2018). Lipids and Fatty Acids in Human Milk: Benefits and Analysis. In V. Y. Waisundara (Ed.), Biochemistry and Health Benefits of Fatty Acids (pp. 91–112). IntechOpen. https://doi.org/10.5772/intechopen.80429

Vyssotski, M., Bloor, S. J., Lagutin, K., Wong, H., & Williams, D. B. G. (2015). Efficient separation and analysis of triacylglycerols: Quantitation of β-palmitate (OPO) in oils and infant formulas. Journal of agricultural and food chemistry, 63(26), 5985–5992. https://doi.org/10.1021/acs.jafc.5b01835

Waidyatillake N. T., Stoney, R., Thien, F., Lodge, C. J., Simpson, J. A., Allen, K. J., Abramson, M. J., Erbas, B., Svanes, C., Dharmage, S. C., & Lowe, A. J. (2017). Breast milk polyunsaturated fatty acids: associations with adolescent allergic disease and lung function. Allergy, 72(8), 1193–1201. https://doi.org/10.1111/all.13114

Wang, L., Li, X., Liu, L., Zhang, H., Zhang, Y., Chang, Y. H., & Zhu, Q. P. (2020). Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food chemistry, 310, Article 125865. https://doi.org/10.1016/j.foodchem.2019.125865

Wenk, M. R. (2010). Lipidomics: new tools and applications. Cell, 143(6), 888–895. https://doi.org/10.1016/j.cell.2010.11.033

Wu, D., Zhang, L., Tan, C. P., Zheng, Z., & Liu, Y. (2023). Comparative lipidomic analysis reveals the lactational changes in the lipid profiles of Chinese human milk. Journal of Agricultural and Food Chemistry, 71(13), 5403–5416. https://doi.org/10.1021/acs.jafc.2c08857

Yuan, Y., Xu, F., Jin, M., Wang, X., Hu, X., Zhao, M., Cheng, X., Luo, J., Jiao, L., Betancor, M. B., Tocher, D. R., & Zhou, Q. (2021). Untargeted lipidomics reveals metabolic responses to different dietary n-3 PUFA in juvenile swimming crab (Portunus trituberculatus). Food Chemistry, 354, Article 129570. https://doi.org/10.1016/j.foodchem.2021.129570

Zhang, Z., Wang, Y., Yang, X., Cheng, Y., Zhang, H., Xu, X., Zhou, J., Chen, H., Su, M., Yang, Y., & Su, Y. (2022). Human milk lipid profiles around the world: a systematic review and meta-analysis. Advances in Nutrition, 13(6), 2519–2536. https://doi.org/10.1093/advances/nmac097

Zhao, P., Zhang, S., Liu, L., Pang, X., Yang, Y., Lu, J., & Lv, J. (2018). Differences in the triacylglycerol and fatty acid compositions of human colostrum and mature milk. Journal of Agricultural and Food Chemistry, 66(17), 4571–4579. https://doi.org/10.1021/acs.jafc.8b00868

Zielinska, M. A., Hamulka, J., Grabowicz-Chądrzyńska, I., Bryś, J., & Wesolowska, A. (2019). Association between breastmilk LC PUFA, carotenoids and psychomotor development of exclusively breastfed infants. International Journal of Environmental Research and Public Health, 16(7), Article 1144. https://doi.org/10.3390/ijerph16071144

Downloads

Publicado

2025-05-14

Como Citar

SILVA, G. A. R. da, SANTOS, P. D. S., ASSAKAWA, A. C., FIGUEIREDO, A. de L., FERREIRA, C. S. R., VISENTAINER, J. V., & SANTOS, O. O. (2025). Comparative lipid analysis of colostrum and mature human milk using UHPLC-Q-TOF-MS . Food Science and Technology, 45. https://doi.org/10.5327/fst.00463

Edição

Seção

Artigos Originais